Uploadity

Aplikacja mobilna sluzaca do publikacji postow w
mediach spolecznosciowych

Autor:
Aleksandra Miloch

Spis tresci

1 Uzyte narzedzia

1.1 Android Studio
1.2 Kotlino
1.3 XML . .
1.4 Retrofit
Koncepcja aplikacji i implementacja
2.1 Wymagania funkcjonalneo
2.2 Wymaganie niefunkcjonalne o000
2.3 Zarzadzanie danymi.00
23.1 Bazadanych.
2.3.2 User DataStore
2.3.3 Pamie¢ wspoldzielonao
2.3.4 Pamie¢ wewnetrzna aplikacjio
2.4 Komponenty aplikacji oo
2.4.1 AndroidManifest.xml oo
242 Gradle
2.4.3 Activity
244 Fragmento
2.4.5 ViewModel
2.5 Laczenie z API mediow spoltecznosciowych
2.5.1 Pobieranie klucza APT
2.5.2 Logowanieo
2.5.3 Przygotowanie obrazu
2.5.4 Publikacja posta
2.5.5 Usuwanie posta

Aplikacja Uploadity

3.1 Zakladka konta oo
3.2 Szczegbdly kontao
3.3 Zaktadka posty
3.4 Nowy post
3.5 Edytuj posto

Rozdzial 1

Uzyte narzedzia

1.1 Android Studio

Android Studio to oficjalne zintegrowane $rodowisko programistyczne (ang. IDE - Inte-
grated Development Environment) shuzace do tworzenia aplikacji na system Android. Jest
oparte na popularnym narzedziu IntelliJ IDEA. Najwazniejsze funkcje Android Studio to:

e szybki i bogaty w wiele funkeji emulator urzadzen,

e clastyczne narzedzie Gradle stuzace do m.in. automatyzacji procesu kompilacji kodu
oraz pobierania zaleznosci (dodatkowych bibliotek),

e ujednolicone $rodowisko umozliwiajace tworzenie aplikacji na wszystkie urzadzenia
z systemem Android,

e integracja z systemem Git ulatwiajace zarzadzania wersjami kodu,

e inteligentna edycja kodu: autouzupetnianie, sprawdzanie poprawnosci oraz szybkie
przegladanie dokumentacji.

1.2 Kotlin

Kotlin! to nowoczesny, statycznie typowany jezyk, ktoéry dziala na maszynie wirtualne;
Javy. Zostat stworzony przez firme JetBrains i jest aktywnie rozwijany przez nia oraz spo-
tecznosé, poniewaz dziata na zasadzie open-source. Jest on w pelni interoperacyjny z Java,
co oznacza ze oba jezyki moga wspotpracowaé ze soba w jednym projekcie oraz korzystaé
wzajemnie ze swoich bibliotek. W 2017 roku Google oglosito Kotlin oficjalnym jezykiem
programowania aplikacji mobilnych na platforme Android powodujac zwickszenie jego
popularnodci.

1.3 XML

XML2, czyli Extensible Markup Language, to uniwersalny jezyk znacznikéw uzywany do
reprezentacji strukturalnych danych w formie tekstowej. Utatwia przechowywanie i przeka-
zywanie informacji pomiedzy réznymi systemami. W Androidzie pelni funkcje zwiazane z

lwww kotlinlang.org
2www.w3.org/ XML

definiowaniem elementoéw interfejsu uzytkownika (takich jak przyciski, pola tekstowe itp.)
oraz konfiguracja aplikacji i jej zasobami graficznymi.

1.4

Retrofit

Retrofit® to popularna biblioteka stuzaca do tworzenia efektywnych klientow RESTful

APL

Jest rozwijana przez Square, a jej gtownym celem jest ulatwienie komunikacji z

serwerem HTTP poprzez tworzenie czystego i tatwego w uzyciu interfejsu. Gtéwne cechy
biblioteki to:

Deklaratywny interfejs API: Retrofit umozliwia definiowanie interfejsu API w
sposob deklaratywny, co oznacza, ze programista okresla, jakie zapytania i jakie dane
sa wymagane bez koniecznosci bezposredniej obstugi niskopoziomowych operacji

HTTP.

Obstuga réznych formatéw danych: Retrofit automatycznie obstuguje rézne
formaty danych takie jak JSON czy XML. Dostepna jest rowniez mozliwo$é skonfi-
gurowania wlasnych konwerteréw danych.

Obsluga asynchroniczno$ci: Obstuguje operacje asynchroniczne, co jest istotne
w kontekscie komunikacji z serwerem. W przypadku Androida, Retrofit zwykle wy-
korzystuje Coroutines jezyka Kotlin lub interfejsy zwrotne (ang. callbacks).

Latwa konfiguracja: Retrofit jest tatwy w konfiguracji i zapewnia elastycznos¢ w
dostosowywaniu ustawien, takich jak timeouty, konwertery, obstuga btedow i tym
podobne.

Obsluga elementow zapytan HTTP: Pozwala na tatwa implementacje nagtow-
kéw, adresow URL, parametrow, rodzajow zapytan, ciata zapytan itp., co jest nie-
zbedne podczas komunikacji z serwerem.

3

www.square.github.io/retrofit /

Rozdzial 2

Koncepcja aplikacji 1 implementacja

Aplikacja Uploadity stuzy do publikacji postow w postaci zdjecia i tekstu na platfor-
mach X, Tumblr oraz Linkedin. Uzytkownik ma mozliwos¢ potaczenia wlasnych kont z
wymienionych platform przez zalogowanie sie z poziomu aplikacji i przekazanie dostepu
do publikacji tresci na swoim profilu. Ponizej przedstawione sa wymagania funkcjonalne
i niefunkcjonalne aplikacji.

2.1

2.2

Wymagania funkcjonalne

Uzytkownik moze doda¢ konto spotecznosciowe do aplikacji przez klikniecie w przy-
cisk, ktory przenosi do strony internetowej konkretnej platformy, gdzie nalezy sie
zalogowaé na konto i przekaza¢ dostep do publikacji tresci na profilu.

Uzytkownik ma mozliwo$¢ wyswietlania listy potaczonych mediéw spotecznoscio-
wych oraz usuwania ich w przypadku, gdy chce uniewazni¢ dostep aplikacji do kon-
kretnego konta.

W celu stworzenia posta, nalezy wejs¢ w ekran edycji publikacji, gdzie uzytkownik
ma mozliwos¢ nadania tytulu, opisu oraz wybrania zdjecia. Po uzupetnieniu tych
pol istnieja dwie opcje - dokonanie wyboru, na ktoére konta ma zosta¢ wstawiony
post lub zapisanie zmian jako wersje robocza. W kazdej chwili uzytkownik moze
porzuci¢ zmiany przez nacis$nieciu przycisku ,,Anuluj”.

Uzytkownik ma mozliwos¢ przegladania listy wersji roboczych oraz opublikowanych
postow. Po wejsciu w szczeg6ly istnieje opcja usuniecia wybranego elementu.

Wymaganie niefunkcjonalne
Przejrzysty i intuicyjny interfejs uzytkownika.
Urzadzenie mobilne powinno posiada¢ system Android w wersji 10 lub wyzszej.
Urzadzenie mobilne powinno posiadaé¢ dostep do internetu.

Uzytkownik posiada konto na przynajmniej jednym z mediéw spotecznosciowych
takich jak X, Tumblr lub Linkedin.

2.3 Zarzadzanie danymi

System Android udostepnia deweloperom rézne sposoby przechowywania danych aplika-
cji. Jest to kluczowy element, ktory pozwala na zachowywanie danych uzytkownika na
urzadzeniu i unikanie ich utraty w przypadku zamkniecia aplikacji. W Uploadity wszyst-
kie dane przechowywane sg lokalnie, dlatego tworzenie serwera aplikacji nie jest potrzebne.
Wazng kwestia jest rowniez dbanie o odpowiednie zarzadzanie pamiecig oraz korzystanie z
odpowiednich metod przechowywania danych w zaleznosci od ich rodzaju oraz poufnosci.
Oto opcje przechowywania danych wykorzystane w aplikacji Uploadity:

2.3.1 Baza danych
Struktura bazy danych

Tabela Accounts przechowuje dane na temat kont uzytkownika na poszczegdlnych plat-
formach spotecznosciowych.

Atrybut Typ Opis

i integer k.lucz gtowny, identyfikator konta w ba-
zie danych

accountld integer 1dentyfik.at0r.pr0ﬁlu na platformie spo-
tecznosciowe;j

name string nazwa profilu uzytkownika

socialMediaServiceName string nazwa platformy spotecznosciowej

Tabela Blogs przechowuje dane na temat blogéw na platformie Tumblr.

Tabela Posts przechowuje dane na temat postéw i wersji roboczych utworzonych w apli-

Atrybut Typ Opis

i integer k'lucz gtowny, identyfikator bloga w ba-
zie danych

accountld | integer klucz' obcy odnoszacy sie do pola id w
tabeli Accounts

name string nazwa bloga

title string tytut bloga

uuid string identyfikator bloga w serwisie Tumblr

kacji.
Atrybut Typ Opis
id integer klucz gtowny, identyfikator posta w bazie danych
title string tytut posta
description string opis posta
mediaUri string Sciezka pliku obrazu dodanego do posta
:sPublished boolean Wart.osc Wska‘zu(]@ca czy post zostal opublikowany,

czy jest wersja robocza

Tabela Post Accounts przechowuje dane na temat postéw opublikowanych na kazdej z
wybranych platform. Klucz gtéwny tworzg trzy atrybuty, ktére sg kluczami obcymi z tabel
Accounts, Posts oraz Blogs.

Atrybut Typ Opis
. klucz obey odnoszacy sie do pola
postld integer . Y Wy Sk O P
id w tabeli Post
. klucz obey odnoszacy sie do pola
accountld integer . y acy sig dop
id w tabeli Accounts
. klucz obey odnoszacy sie do pola
blogld integer . Y y siedop
id w tabeli Blogs
wartos¢ wskazujaca czy post zo-
isPublished boolean stal opublikowany na konkretnej
platformie
. .) nazwa platformy spolecznoscio-
socialMediaPlatformName | string . p Y PP
wej
name string nazwa konta lub bloga
Post
@ id int —
title string
description string
medialri string
isPublished boolean PostAccount
Account < postld int
@ id int < accountld int
accountld int < blogld int
name string Blog isPublished boolean
socialMediaServiceName | string @ int socialMediaPlatformName | string
< accountld int .
name string
name string
title string
uuid string

Rysunek 2.1: Diagram bazy danych

Biblioteka Room

W celu umozliwienia ptynnego dostepu do lokalnej bazy danych Android stworzyt biblio-
teke Room!, u podstawy ktoérej znajduje sie popularny system zarzadzania relacyjng baza
danych SQLite. Room dostarcza wygodny i efektywny interfejs do operacji bazodanowych.
Oto korzysci wynikajace z uzywania tej biblioteki:

e weryfikacja zapytan SQL w czasie kompilacji,

lwww.developer.android.com /jetpack /androidx /releases /room

e adnotacje, ktére minimalizujg prawdopodobieristwo powtarzalnego i podatnego na
btedy kodu,

e mozliwos¢ wygodnej integracji bazy z innymi elementami architektury Androida.
Do podstawowych elementéw biblioteki Room naleza:

e klasa bazy danych, ktora jest gléwnym punktem dostepu do potaczenia z danymi
aplikacji,

e encje, ktore reprezentuja tabele w bazie danych,

e obiekty dostepu do danych DAO (Data Access Objects), ktore dostarczaja funkcje
tworzenia zapytan bazodanowych SQL.

Aby wykorzystaé¢ biblioteke Room w aplikacji, nalezy doda¢ nastepujace zaleznosci do
pliku build.gradle:

implementation 'androidx.room:room-runtime:2.6.0'
annotationProcessor 'androidx.room:room-compiler:2.6.0'

Nastepnie nalezy zdefiniowaé¢ encje, ktére bedg reprezentowaé strukture w bazie danych.
Encje to klasy, ktore odpowiadaja tabelom w bazie danych. Przyktadowo implementacja
encji w tabeli Accounts wyglada nastepujaco:

@Entity(tableName = "accounts")
data class Account(
@PrimaryKey(autoGenerate = true) val id: Int,
val accountld: String,
val name: String,
val socialMediaServiceName: String

)

Kolejnym krokiem jest implementacja DAO (Data Access Object), ktory definiuje opera-
cje, ktore mozna wykonywaé na bazie danych. Zawiera metody do wstawiania, pobierania,
aktualizowania i usuwania danych.

@Dao

interface AccountDao {
@Query ("SELECT * FROM accounts")
fun getAllAccounts(): List<Account>

@Query ("SELECT * FROM accounts WHERE id = :id")
fun getAccount(id: Int): Account?

@Query ("SELECT * FROM accounts WHERE socialMediaServiceName =
:socialMediaName")

fun getAccountBySocialMediaName(socialMediaName: String): Account?

@Insert

fun insert(account: Account): Long

QUpdate
fun update(account: Account)

@Delete
fun delete(account: Account)

by

Baze danych reprezentuje klasa, ktora rozszerza RoomDatabase i zawiera metody abstrak-
cyjne zwracajace DAQO:

@Database(entities = [Post::class, Account::class, Blog::class,
PostAccount: :class])
abstract class AppDatabase : RoomDatabase() <
companion object {
private var instance: AppDatabase? = null

fun getInstance(context: Context): AppDatabase {
if (instance == null) {
instance = Room.databaseBuilder(context,
AppDatabase: :class. java, "the_database.db")
.allowMainThreadQueries ()
.fallbackToDestructiveMigration()
.build ()

return instance as AppDatabase

abstract fun postDao(): PostDao

abstract fun accountDao(): AccountDao
abstract fun blogDao(): BlogDao

abstract fun postAccountDao(): PostAccountDao

}

W klasie AppDatabase przez funkcje getInstance() zaimplementowany zostal wzorzec
projektowy singleton, ktory zapewnia, ze w aplikacji zawsze bedzie istniata tylko jedna
instancja bazy danych, co zapobiega wyciekom pamieci.

Teraz mozna uzy¢ DAO do wykonywania operacji na bazie danych w catej aplikacji.
Ponizszy kod przedstawia przyklad pobrania listy wszystkich kont uzytkownika:

val appDao = AppDatabase.getInstance(getApplicationContext())
val accounts = appDao.accountDao().getAllAccounts()

2.3.2 User DataStore

To biblioteka stuzaca do przechowywania prostych danych (np. ustawienia uzytkownika
czy stan sesji) klucz-warto$¢ w formie mapy. Pozwala na asynchroniczne, spojne i transak-
cyjne zarzadzanie danymi. Dziata na zasadzie przesytania strumieniowego, dzieki czemu
nie trzeba wezytywaé wszystkich danych do pamieci jednoczes$nie, co moze by¢ korzystne
w przypadku duzych zbioréw danych. W aplikacji rozwiagzanie to zostato uzyte do prze-
chowywanie tokenow profili mediow spotecznosciowych, ktére zostaly potaczone przez
uzytkownika.

Aby wykorzysta¢ biblioteke DataStore w aplikacji, nalezy dodaé¢ nastepujace zaleznosci
do pliku build.gradle:

implementation 'androidx.datastore:datastore-preferences:1.0.0'

W klasie UserDataStore zaimplementowane zostato tworzenie instancji
DataStore<Preferences> oraz funkcje saveStringPreference()
i getStringPreference (), ktore stuza do zapisywania i odczytywania danych typu string.

class UserDataStore(private val context: Context?) {
companion object {
private val Context.dataStore: DataStore<Preferences>
by preferencesDataStore("datastore_name")

suspend fun getStringPreference(key: String): String {
val stringPreferenceKey = stringPreferencesKey(key)
return context!!.dataStore.data.map { preferences ->
preferences[stringPreferenceKey] 7: ""
+.first)

suspend fun saveStringPreference(key: String, value: String) {
val stringPreferenceKey = stringPreferencesKey(key)
context!!.dataStore.edit { preferences ->
preferences[stringPreferenceKey] = value

by

2.3.3 Pamieé¢ wspoéldzielona

Jest to przestrzen, w ktorej dane moga byé¢ wspotdzielone miedzy réznymi aplikacjami
i uzytkownikami. W aplikacji Uploadity konieczny jest dostep do mediéw, aby moc za-
tadowa¢ obraz do posta. Do tej funkcji wykorzystany zostal MediaStore, czyli dostepny
w Androidzie system, ktory sledzi i zarzadza réznymi rodzajami mediéw, takimi jak ob-
razy, filmy, dzwieki itp. Udostepnia interfejs do dostepu do plikéw multimedialnych, a
takze umozliwia dostep do nich przez rézne aplikacje. Aby uzyskaé dostep do mediow w

Androidzie, nalezy dodaé¢ odpowiednie uprawnienie do odczytu mediéw w pliku Android-
Manifest.xml:

<uses-permission android:name="android.permission.READ_MEDIA_IMAGES" />
Nastepnie nalezy zarejestrowa¢ uruchomienie wybierania pojedynczego obrazu z galerii:

val pickMedia = registerForActivityResult(
ActivityResultContracts.PickVisualMedia()) { uri ->
if (uri != null) {
chooseMedia(uri)

¥

Po wezytaniu obrazu, mozna nim zarzadzac¢ przez jego URI (ang. Uniform Resource Iden-
tifier), czyli identyfikator do obstugiwania zasobéw w Androidzie.

2.3.4 Pamieé¢ wewnetrzna aplikacji

Kazda aplikacja Androida posiada dedykowana lokalizacje do przechowywania plikow.
Dane zapisane wewnetrznie sa dostepne tylko dla danej aplikacji i nie sa widoczne w innych
miejscach. W momencie usuniecia aplikacji wszystkie pliki zostaja usuniete. W Uploadity
rozwiazanie to zostatlo wykorzystane do przechowywania obrazéw, ktoére zostaly dodane
do postéw oraz wersji roboczych. Plik nalezy utworzy¢ w nastepujacy sposob:

val file = File(context.filesDir, "post_\${post.id}.png")

Plik powstaje w lokalizacji zdefiniowanej przez filesDir. Nazwa kazdego zapisanego ob-
razu zawiera id posta, aby zapobiec nadpisywaniu przez siebie plikow. Nastepnie wczy-
tywane jest zdjecie na podstawie jego URI przez uzycie ImageDecoder. Bitmapa zostaje
zapisana do pliku, a strumienn zapisu zamkniety.

val source = ImageDecoder.createSource(contentResolver, mediaUri)
val bitmap = ImageDecoder.decodeBitmap(source)

val fileOutputStream = FileQutputStream(file)
bitmap.compress(Bitmap.CompressFormat.PNG, 100, fileOutputStream)
fileQutputStream.flush()

fileOutputStream.close()

2.4 Komponenty aplikacji

2.4.1 AndroidManifest.xml

Kazdy projekt Androida posiada plik AndroidManifest.xml. Zawiera on informacje na
temat aplikacji, jej komponentéw oraz wymagan systemowych i sprzetowych. Dodatkowo
jest niezbedny do rozpoznania i skonfigurowania aplikacji podczas jej instalacji i urucha-
miania. Gléwne elementy pliku AndroidManifest.xml to:

10

e Informacje o aplikacji: Zdefiniowanie nazwy projektu i aplikacji, jej ikony, mo-
tywu 1 innych w znaczniku <application>:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<application
android:name=".UploadityApplication"
android:label="@string/app_name"
android:icon="@mipmap/ic_launcher"
android:theme="@style/Theme.Uploadity">
<!-- Sktadniki aplikacji -->
</application>
</manifest>

o Aktywnosci: Elementy reprezentujace ekrany z interfejsem uzytkownika, takie jak
ekran listy kont, ekran tworzenia nowego posta itp. Oto przyktadowe elementy
Activity w pliku AndroidManifest.xml:

<activity android:name=".AccountActivity"
android:exported="false" />
<activity android:name=".MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>

Warto zauwazy¢, ze MainActivity jest gléwna aktywnoscia, co oznacza, ze po
otwarciu aplikacji pokazuje sie uzytkownikowi jako pierwsza. Dzieje sie to dzieki
dodaniu odpowiedniej akcji i kategorii wewnatrz znacznika <intent-filter>.

e Uprawnienia: Okreslaja, jakie uprawnienia do zasobdéw systemowych sa wymagane
przez aplikacje. W przypadku Uploadity jest to dostep do internetu i wezytywania
obrazow z galerii:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.READ_MEDIA_IMAGES"/>

2.4.2 Gradle

Gradle jest systemem budowania wykorzystywanym w aplikacjach Androida. Konfiguracja
projektu znajduje si¢ w plikach build.gradle, ktore gltéwnie zawieraja informacje na
temat kompilacji, zarzadzania zaleznosciami i zasobami. Oto skrocony przeglad zawartosci
pliku build.gradle w projekcie Uploadity:

11

plugins {
id 'com.android.application'

}
android {
applicationId 'com.uploadity'
compileSdk 34
versionCode 1
versionName '1.0'
}

dependencies {
implementation 'androidx.core:core-ktx:1.12.0'
implementation 'com.squareup.retrofit2:retrofit:2.9.0'
implementation 'androidx.datastore:datastore-preferences:1.0.0'

W sekcji plugins znajduje sie wtyczka Gradle przeznaczona dla Androida. W bloku
android skonfigurowane sa wszystkie opcje budowania aplikacji, takie jak jej wersja, prze-
strzen nazw (namespace) czy wersja Androida, na ktora domyslnie jest kompilowana. Blok
dependencies definiuje wszystkie zaleznosci (czyli dodatkowe biblioteki) dodane do pro-
jektu.

2.4.3 Activity

W Androidzie Activity to jedna z podstawowych jednostek aplikacji. Jest to kompo-
nent, ktéry reprezentuje pojedynczy ekran aplikacji. Kazda aktywnos¢ jest zazwyczaj
odpowiedzialna za przedstawienie Ul (interfejsu uzytkownika) i interakcje z uzytkowni-
kiem w ramach jednej okreslonej funkcji aplikacji. W przeciwienistwie do paradygmatow
programowania, w ktorych aplikacje sa uruchamiane za pomoca metody main(), system
Android inicjuje kod w instancji Activity, wywolujac go w metodach odpowiadajgcych
konkretnym etapom jej cyklu zycia. Oto kilka kluczowych cech Activity w Androidzie:

e Interfejs uzytkownika: Aktywnosc jest czesto zwiazana z interfejsem uzytkownika
i moze zawiera¢ rézne elementy wizualne takie jak przyciski, pola tekstowe, listy,
itp. Widok ekranu jest definiowany w pliku XML.

e Intencje (Intents): Aktywnosci komunikuja sie ze sobg i innymi komponentami
systemu za pomoca intencji. To zazwyczaj zadanie do systemu Androida, aby wyko-
nal okreslong akcje taka jak uruchomienie nowej aktywnosci, ustugi i tym podobne.

e Obsluga zdarzen: Aktywnos$¢ moze reagowaé na rézne zdarzenia generowane przez
uzytkownika, takie jak dotkniecie ekranu. Odbywa sie ona poprzez implementacje
roznych metod, na przyklad onClick() w przypadku klikniecia przycisku.

Ponizszy kod przedstawia podstawowe elementy MainActivity, czyli gtéwnej aktywnosci
w aplikacji:

12

class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)

//Inicjalizacja interfejsu uzytkownika i obstuga zdarzein
i
// Dodatkowe metody i logika aktywnosci

3

Kazda klasa aktywno$ci dziedziczy po klasie Activity lub jednym z jej wariantow, w
powyzszym przyktadzie jest to AppCompatActivity. Nadpisujac metode onCreate () mo-
zemy dodacé akcje, ktore zostang wykonane w trakcie stworzenia aktywnosci. W tym przy-
padku jest to zainicjowanie zmiennej binding, ktéra odnosi sie do interfejsu uzytkownika
zapisanego w pliku XML.

2.4.4 Fragment

Fragment to komponent reprezentujacy czes¢ interfejsu uzytkownika lub zachowanie w
jednym oknie aplikacji, ktory jest umieszczony w aktywnosci (Activity). Fragmenty sa
czesto uzywane w celu zorganizowania interfejsu uzytkownika na wiekszych ekranach (ta-
kich jak tablety) lub do utatwienia ponownego uzycia i modularyzacji kodu. Co wiecej,
moga by¢ dodawane, usuwane lub zastepowane dynamicznie podczas dziatania aplikacji.
W aplikacji Uploadity fragmenty zostaly uzyte w zaktadkach listy kont i postéw, ktore
sa umieszczone w MainActivity. W tej aktywnosci obstugiwany jest réwniez dolny pasek
nawigacji umozliwiajacy przelaczanie pomiedzy zaktadkami.

Dpublikowane posty
Dodaj nowe konto

i Test2

Lista kont

Nersje robocze
m Ola Dark
E Post 1

HomeFragment DashboardFragment
" &
MainActivity

Rysunek 2.2: Umieszczenie fragmentow listy kont oraz postéw w MainActivity

13

Ponizszy kod przedstawia podstawowe elementy DashboardFragment, gdzie znajduje sie
lista kont:

class HomeFragment : Fragment() {
private var binding: FragmentHomeBinding

override fun onCreateView(
inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?

): View? {
binding = FragmentHomeBinding.inflate(inflater, container, false)

//Inicjalizacja interfejsu uzytkownika i obstuga zdarzein

return binding.root
+
// Dodatkowe metody i logika fragmentu
}

OnCreateView () to jedna z metod cyklu zycia fragmentu w Androidzie. Jest wywotywana,
gdy fragment inicjuje swoje interfejsy uzytkownika przez zaladowanie widoku z pliku
XML.

2.4.5 ViewModel

ViewModel to czes¢ architektury, ktéra pomaga w separacji logiki biznesowej od interfejsu
uzytkownika oraz w przetrzymywaniu danych w sposéb trwalty podczas zmian konfiguracji
(takich jak obrot urzadzenia). W aplikacji Uploadity zostal wykorzystany w celu przejrzy-
stego i asynchronicznego dostepu do danych. Ponizszy diagram przedstawia zarys imple-
mentacji tej architektury na przyktadzie ekranu listy kont umieszczonego w HomeFragment
i zarzadzanego przez MainViewModel:

14

HomeF ragment

| Observer
!

| Accountlist |

|

MainViewModel

| LiveData<List<Account==> |

1

[DatabaseRepository]

i AppDatabase \\\\\ i
i [i%é;;géii' .| AccountDao i

I o

Rysunek 2.3: Diagram implementacji ViewModel

Oto opis poszczegdlnych krokéw wymaganych do implementacji tej architektury:

1. Na poczatku nalezy zmodyfikowaé¢ AccountDao i zmieni¢ typ danych zwracanych
przez funkcje pobierajaca wszystkie konta uzytkownika na Flow. Jest to klasa umoz-
liwiajaca przesytanie danych w sposéb asynchroniczny. Zaktualizowana metoda wy-
glada nastepujaco:

@Query ("SELECT * FROM accounts")
fun getAllAccountsFlow(): Flow<List<Account>>

2. Nastepnie nalezy stworzyé¢ klase repozytorium, ktoéra zajmuje sie operacjami na da-
nych i zapewnia przejrzysty interfejs API dla pozostatej czesci aplikacji. Oto przeglad
najwazniejszych czedci implementacji tej klasy:

class AppDatabaseRepository(
private val accountDao: AccountDao

) {
val allAccounts: Flow<List<Account>> =
accountDao.getAllAccountsFlow()

3. Nastepnym krokiem jest implementacja klasy MainViewModel. Bedzie ona zapew-
niata liste kont uzytkownika i przesylata ja do widoku HomeFragment w asynchro-
niczny sposob. Aby tego dokonaé, nalezy wykorzysta¢ LiveData, czyli obiekt prze-

15

chowujacy dane obserwowane przez interfejs uzytkownika. Pozwoli to na automa-
tyczne aktualizowanie widoku w odpowiedzi na zmiany danych w efektywny sposob.
Na poczatku nalezy doda¢ do pliku build.gradle nastepujace zaleznosci:

implementation 'androidx.lifecycle:lifecycle-livedata-ktx:2.6.2'
implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.6.2'

Ponizszy kod przedstawia, jak zostata zaimplementowana klasa MainViewModel:

class MainViewModel(
private val appDatabase: AppDatabaseRepository
): ViewModel() {
private val allAccounts: LiveData<List<Account>> =
appDatabase.allAccounts.asLiveData()

fun getAllAccounts(): LiveData<List<Account>> {
return allAccountsLiveData

}

4. Teraz w klasie HomeFragment mozemy stworzy¢ obserwatora za pomoca metody
observe (), ktory bedzie automatycznie aktualizowal liste potaczonych kont uzyt-
kownika:

mainViewModel.getAllAccounts() .observe(viewLifecycleOwner)
{ accounts ->
accounts.let { accountItemListAdapter.submitList(it) }

Zmienna accountItemListAdapter jest czeScia interfejsu uzytkownika, ktora wy-
Swietla liste kont na ekranie. Obserwator z kazda aktualizacja danych przekazuje je
za pomoca funkcji submitList ().

2.5 Laczenie z API mediéw spolecznoSciowych

Aby wykonywaé dzialania w imieniu profilu uzytkownika, nalezy uzyskaé¢ jego token do-
stepu (ang. access token). W aplikacji Uploadity proces uwierzytelniania rozpoczyna sie
po wcidnieciu jednego z przyciskow na ekranie listy kont. Yaczenie sie z API mediéw spo-
tecznosciowych obejmuje kilka kluczowych krokéw, ktore zostana opisane w tym rozdziale.

2.5.1 Pobieranie klucza API

W celu uzyskania dostepu do API mediéw spoteczno$ciowych, programista musi uzyskac
odpowiednie klucze API i tokeny dostepu w panelu dewelopera. Dodatkowo, aby moc
udostepnia¢ posty w imieniu uzytkownika, nalezy ustawi¢ wymagania umozliwiajace te
akcje za pomoca aplikacji. Oprocz tego wymagane jest podanie strony callback URL,

16

czyli strony internetowej, na ktoéra uzytkownik zostanie przeniesiony podczas procesu
autoryzacji. W przypadku platformy X wyglada to nastepujaco:

App permissions (couicd)

These permissions enable OAuth 1.0a Authentication. @

) Read
Read Tweets and profile information

@® Read and write
Read and Post Tweets and profile information

(_) Read and write and Direct message
Read Tweets and profile information, read and post Direct messages

% Request email from users
To request email from users, you are required to provide URLs to your
App's privacy policy and terms of service.

Rysunek 2.4: Ustawienia uprawnieri aplikacji w panelu dewelopera. Zrédto: opracowanie
wlasne.

App info

Callback URI / Redirect URL (required) (3

https://uploadity.net.pl/twitter x

Rysunek 2.5: Podanie adresu callback URL w panelu dewelopera. Zrodlo: opracowanie
wlasne.

Nalezy unika¢ przechowywania kluczy API bezposrednio w kodzie zrédtowym, poniewaz
moga one zosta¢ wyodrebnione podczas dekompilacji, dlatego w aplikacji Uploadity sa
przechowywane w nastepujacy sposob:

1. Na poczatku stworzony zostal plik local.properties, gdzie umieszczone sg klucze
APIL:

TWITTER_CLIENT_ID="XXXXXXXXXXXXXX"
TWITTER_CLIENT_SECRET="XXXXXXXXXXXXXX"

2. Nastepnie w pliku build.gradle klucze zostaty zdefiniowane jako wtasciwosci:

android {
defaultConfig {

Properties properties = new Properties()

properties.load(project.rootProject.file("local.properties")
.newDataInputStream())

buildConfigField "String", "TWITTER_CLIENT_ID",
properties.getProperty("TWITTER_CLIENT_ID")

buildConfigField "String", "TWITTER_CLIENT_SECRET",
properties.getProperty ("TWITTER_CLIENT_SECRET")

17

3. Teraz klucze API sa dostepne w klasie BuildConfig w kodzie zrédtowym. Oto
przyktad uzycia:

val linkedinClientId = BuildConfig.TWITTER_CLIENT_ID

2.5.2 Logowanie

Logowanie do API mediéw spolecznosciowych opiera sie na otwartym standardzie uwie-
rzytelniania internetowego OAuth, ktéry umozliwia bezpieczny dostep do zasobéw uzyt-
kownika bez koniecznosci ujawniania jego hasta. Oto jego dwie wersje uzyte w aplikacji
Uploadity:

e OAuth 1.0 polega na tym, ze kazde zadanie wymagajace dostepu do zasobow
uzytkownika jest podpisywane przy uzyciu klucza konsumenta (ang. consumer key)
i klucza dostepu (ang. access token). To zabezpiecza przed modyfikacja zadania
podczas transmisji. W aplikacji Uploadity protokot zostat zaimplementowany w celu
polaczenia sie z API platformy X.

e OAuth 2.0 zostal zbudowany w sposob bardziej elastyczny i prosty niz poprzednia
wersja. Jego autoryzacja jest oparta na tokenach dostepu. Uzytkownik autoryzuje
aplikacje, a w zamian otrzymuje token, ktory pozwala na wykonywanie dziatan
w jego imieniu. OAuth 2.0 zostal zaimplementowany w celu potaczenia sie z API
platform Linkedin i Tumblr.

Autoryzacja uzytkownika za pomocg OAuth 1.0

Oto kroki procesu uwierzytelnienia konta uzytkownika platformy X:

1. Uzyskanie tymczasowego tokenu zadania (ang. request token) za pomoca zapyta-
nia HTTP POST oauth/request_token do API platformy spotecznosciowej. Oprocz
wymaganych parametréw wymaganych w nagléwku autoryzacyjnym protokotu
OAuth 1.0, nalezy dodatkowo umiesci¢ tam warto$¢ oauth_callback, czyli adres
URL, do ktorego zostanie przekierowany uzytkownik po udzieleniu aplikacji dostepu
do wykonywania zapytan w jego imieniu, a takze parametr oauth_consumer_key,
czyli klucz APT aplikacji. Ponizszy kod przedstawia funkcje requestToken() w in-
terfejsie TwitterApiInterface implementujaca to zapytanie za pomoca biblioteki
Retrofit:

@POST ("oauth/request_token")
fun requestToken(
QHeader ("Authorization") authorizationHeader: String,

@Query("oauth_callback") callbackUrl: String
): Call<ResponseBody>

Jesli powyzsze zadanie powiodlo sie, powinniSmy otrzymac nastepujaca odpowiedz:

oauth_token=XXX&oauth_token_secret=XXX&oauth_callback_confirmed=true

18

Parametr oauth_token i oauth_token_secret to tymczasowe tokeny dostepu, a
oauth_callback_confirmed to dodatkowe potwierdzenie, ze zapytanie przebiegto
pomyslnie.

2. Po otrzymaniu tokenéow z poprzedniego zadania mozemy wykonaé zapytanie
GET oauth/authorize, w ktorym przekazujemy parametr oauth_token uzyskany w
poprzednim kroku. Oto przyktadowy adres URL, na ktéry przenosimy uzytkownika:

https://api.twitter.com/oauth/authorize?oauth_token=XXX

Ponizszy kod z klasy MainActivity przedstawia sposob, w jaki ta akcja jest wyko-
nywana:

val intent = Intent(Intent.ACTION_VIEW,
Uri.parse("https://api.twitter.com/oauth/authorize?oauth_token=XXX")
startActivity(intent)

Po wykonaniu tego zadania uzytkownik zostaje przekierowany do przegladarki na
strone platformy, gdzie zostaje poproszony o udzielenie dostepu aplikacji do udo-
stepniania postow w jego imieniu:

Zezwoli¢ aplikacji uploadity na
dostep do Twojego konta? %

uploadit

uploadity.net.p
Ta aplikacja bedzie mie¢ nastepujace uprawnienia: This app was created to use the Twitter
« Ma dostep do Tweetéw na Twojej osi czasu (w tym do API
chronionych Tweetéw), list i kolekcji.
* Moze wyswietla¢ Twéj profil na Twitterze i ustawienia
konta.

Ma dostep do informacji o obserwowanych,
wyciszonych i zablokowanych kontach.

* Moze obserwowac konta lub przesta¢ to robi¢ w Twoim
imieniu.

Moze aktualizowa¢ Twdj profil i ustawienia konta.

Moze publikowa¢ i usuwac Tweety oraz reagowac na

Tweety innych (polubic je, cofnag¢ polubienie,

odpowiedzie¢, podac¢ dalej itd.) w Twoim imieniu.

* Moze tworzy¢ i usuwaé listy oraz kolekcje, a takze
zarzadzaé nimi za Ciebie.

* Moze wyciszaé, blokowac¢ i zgtasza¢ konta w Twoim

imieniu.

Rysunek 2.6: Strona udzielenia uprawnien uzytkownika przez aplikacje. Zrodlo: opraco-
wanie wlasne.

Po zaakceptowaniu prosby platforma X przekierowuje uzytkownika na podang wcze-
$niej strone jako oauth_callback z parametrami umieszczonymi w tym adresie
URL. W aplikacji Uploadity calback URL dla platformy

X to https://uploadity.net.pl/twitter. Przykltadowo w przypadku, gdy uzyt-
kownik autoryzowat aplikacje, zostanie przeniesiony do przegladarki na nastepujaca
strone:

19

https://uploadity.net.pl/twitter?oauth_token=XXXXXXX
&oauth_verifier=XXXXXXX

Teraz nalezy przekierowa¢ uzytkownika z powrotem do aplikacji. Aby umozliwi¢ te
czynno$¢, na poczatku nalezy umiesci¢ w AndroidManifest.xml kod, ktory zezwoli
na otwieranie aplikacji z podanego adresu:

<activity
android:name=".MainActivity">
<intent-filter android:autoVerify="true">
<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.BROWSABLE"/>
<data android:scheme="https"/>
<data android:host="uploadity.net.pl"/>
<data android:pathPrefix="/twitter"/>
</intent-filter>
</activity>

Atrybut android:autoVerify="true" sygnalizuje systemowi, ze podany adres URL
moze otwiera¢ automatycznie aplikacje. Dodatkowo nalezy zadeklarowac¢ potaczenie
pomiedzy strong a <intent-filter> przez plik JSON umieszczony w lokalizacji
https://uploadity.net.pl/.well-known/assetlinks. json, ktory zostaje auto-
matycznie wygenerowany w Android Studio po podaniu odpowiednich informac;ji.
Zawartos¢ pliku wyglada nastepujaco:

{
"relation": ["delegate_permission/common.handle_all_urls"],
"target": {
"namespace": "android_app",
"package_name": "com.uploadity",
"sha256_cert_fingerprints":
["1E:42:89:08:E1:AB:43:56:17:54:01:DA:64:52:77:28:AD:3C:60:9F:F7
:64:67:54:4E:B9:26:DD:DE:D2:48:D4"]
}
3]

Istotne elementy w tym pliku to wartosé¢ package_name, ktory definiuje ID aplikacji
zadeklarowane w pliku build.gradle oraz sha256_cert_fingerprints, czyli klucz
podpisywania aplikacji.

Po automatycznym przekierowaniu uzytkownika do aplikacji, laduje on na ekranie
MainActivity dzieki wczesniejszej deklaracji tej aktywnosci w pliku
AndroidManifest.xml. Teraz mozemy odczytaé¢ adres strony URL, z ktoérego zosta-
liSmy przeniesieni i przetworzyé¢ parametry przekazane w tym adresie umieszczajac
nastepujacy kod w klasie MainActivity:

20

val appLinkIntent: Intent = intent
val applLinkData: Uri? = appLinkIntent.data
if (appLinkData !'= null) {
when (appLinkData.lastPathSegment) {
"twitter" -> {
val oauthToken = appLinkData
.getQueryParameter ("oauth_token")
val oauthVerifier = appLinkData
.getQueryParameter ("oauth_verifier")
val oauthCallbackConfirmed = appLinkData
.getQueryParameter ("oauth_callback_confirmed")
if (oauthCallbackConfirmed == true) {
getTwitterAccessToken(oauthToken, oauthVerifier)

3. Ostatnim etapem autoryzacji jest wykonanie zapytania POST oauth/access_token
z parametrami oauth_token i oauth_verifier otrzymanymi w poprzednim kroku.
Ponizszy kod przedstawia funkcje accessToken() w interfejsie
TwitterApiInterface implementujaca to zapytanie za pomoca biblioteki Retrofit:

@POST("oauth/access_token")
fun accessToken(
OQuery("oauth_token") oauthToken: String,
QQuery("oauth_verifier") oauthVerifier: String
) : Call<ResponseBody>

4. Teraz mozemy zapisaé otrzymane w odpowiedzi tokeny dostepu w DataStore apli-
kacji w nastepujacy sposob:

userDataStore.saveStringPreference (
userDataStore.twitterAccessTokenKey, userOauthToken)

userDataStore.saveStringPreference(
userDataStore.twitterAccessTokenSecretKey, userOauthTokenSecret)

Autoryzacja uzytkownika za pomoca OAuth 2.0

Oto kroki procesu uwierzytelnienia konta uzytkownika w protokole OAuth 2.0 na przy-
ktadzie platformy Linkedin:

1. Aplikacja przekierowuje uzytkownika na strone autoryzacji
https://www.linkedin.com/oauth/v2/authorization, gdzie uzytkownik upraw-
nia aplikacje do wykonywania akcji w jego imieniu. W adresie URL powinny sie
znajdowadé nastepujace parametry:

21

e response_type - jego wartoS¢ to zawsze code,
e client_id, czyli klucz API aplikacji wygenerowany w panelu dewelopera,

e redirect_uri, czyli adres URL, do ktoérego uzytkownik zostanie przekiero-
wany po przejsciu autoryzacji. Wartosé ta powinna by¢ taka sama jak podany
wczedniej adres w panelu dewelopera,

e scope, czyli lista pozwolenn wymagana przez aplikacje. Warto$é ta powinna byé
zakodowana w systemie UTF-8.

Przyktadowy adres URL, na jaki przekierowujemy uzytkownika bedzie wygladat
nastepujaco:

https://www.linkedin.com/oauth/v2/authorization?response_type=code
&client_id=XXXXX&redirect_uri=https://uploadity.net.pl/linkedin
&scope=scope=w_member_social’20openid},20profile’,20email

Po wykonaniu tego zadania uzytkownik zostaje przekierowany do przegladarki na
strone platformy, gdzie zostaje poproszony o udzielenie aplikacji pozwolenia na udo-
stepnianie postow w jego imieniu oraz przekazanie podstawowych informacji:

Uploadity would like to:

« Use your name and photo

« Create, modify, and delete posts, comments,
and reactions on your behalf

« Use the primary email address associated with
your LinkedIn account

You can stop this sync in your LinkedIn
settings. Uploadity terms apply. Learn more.

Not you?

| car |

You will be redirected to https://uploadity.net.pl

Rysunek 2.7: Strona udzielenia uprawnien uzytkownika przez aplikacje. Zrodlo: opraco-
wanie wtasne.

2. W przypadku, gdy uzytkownik wyrazi zgode, zostaje przekierowany na strone prze-
kazana wczesniej jako parametr redirect_uri wraz z wartoscia code, ktora jest
wymagany w nastepnym kroku autoryzacji. Przyktadowy adres URL, na jaki zosta-
nie przeniesiony uzytkownik to:

https://uploadity.net.pl/linkedin?code=XXXXXX

Powyzszy adres przekierowuje uzytkownika z powrotem do aplikacji na tej samej
zasadzie, jak w przypadku logowania na platforme X.

22

3. Ostatnim krokiem logowania jest wymiana kodu autoryzacyjnego uzyskanego w po-
przednim kroku na token dostepowy za pomoca zapytania
POST oauth/v2/accessToken. Cialo zapytania (ang. request body) powinno zawie-
ra¢ nastepujace parametry:

e grant_type - jego wartos¢ to zawsze authorization_code,

e code, czyli klucz kod autoryzacyjny otrzymany w poprzednim kroku,

e redirect_uri, czyli callback URL podany w poprzednim zapytaniu,

e client_id, czyli klucz API aplikacji wygenerowany w panelu dewelopera,

e client_secret, czyli czyli tajny klucz API aplikacji wygenerowany w panelu
dewelopera.

Wynikiem pomy$lnie zakoriczonego zapytania jest warto$é access_token, czyli to-
ken dostepowy do autoryzowania dziatan w imieniu uzytkownika. Powinien by¢ on
przesytany w naglowku przy kazdym zadaniu wykonywanym przez aplikacje w na-
stepujacym formacie:

Authorization: Bearer {access_token}

2.5.3 Przygotowanie obrazu

W celu udostepnienia posta z dotaczonym do niego obrazem nalezy najpierw odpowiednio
przygotowaé grafike wedtug wytycznych mediéw spoteczno$ciowych. Ten proces zostanie
omowiony ponizej z uwzglednieniem kazdej z platform z osobna.

X

Aby przestaé¢ zdjecie, nalezy wykonaé¢ zapytanie POST na adres
https://upload.twitter.com/1.1/media/upload.json. W zadaniu powinien znajdo-
wacl sie parametr media_category, czyli rodzaj przesylanych mediéw, w przypadku ob-
razu jest to TWEET_IMAGE. Nalezy réwniez doda¢ dwa nagtowki: autoryzacyjny oraz
Content-Type: multipart/form-data - pozwala on na jednoczesne przesyltanie wielu ro-
dzajow danych w jednym zapytaniu. W zadaniu umieszczamy cialo zapytania w formacie
octet-stream, ktory pozwala na przesytanie pliku binarnego. Ponizszy kod przedstawia
implementacje tego zapytania:

val file = createImageFile()
val client = OkHttpClient()
val requestBody = MultipartBody.Builder()
.setType (MultipartBody.FORM)
.addFormDataPart ("media", file.name,
file.asRequestBody("application/octet-stream".toMediaType()))
.build)
val request = Request.Builder()
.url("https://upload.twitter.com/1.1/media/upload. json
7Tmedia_category=tweet_image")
.post (requestBody)
.addHeader ("Authorization", authorizationHeader)
.build)

23

Jesli zadanie przebiegto pomyslnie, otrzymujemy odpowiedZ z danymi na temat obrazu,
gdzie najwazniejszym parametrem jest media_id, ktéry pozniej zostanie wykorzystany do
zalaczenia mediow do posta.

Linkedin

W celu wystania obrazu, nalezy na poczatku wykona¢ zapytanie

POST https://api.linkedin.com/rest/images?action=initializeUpload inicjalizu-
jece ten proces. Przekazujemy parametr owner, ktory jest id uzytkownika na platformie
Linkedin otrzymanym w procesie autoryzacji. OdpowiedZ pomyslnie zakonczonego zapy-
tania zawiera adres URL, na ktéry powinnismy przesta¢ obraz oraz id grafiki. Nastepnie
nalezy wysta¢ zadanie PUT na wskazany wcze$niej adres i przekazac plik w ciele zapytania.
Ponizszy kod przedstawia implementacje tego kroku:

val request = Request.Builder()
.header ("Authorization", "Bearer {access_token}")
.url("https://www.linkedin.com/dms-uploads/sp/D4E10AQEHbyAxUyRRkKA")
.put(file.asRequestBody("image/png".toMediaTypeOrNull()))
.build ()

Jesli zapytanie zwroci kod 201 Created, oznacza to ze przebieglto ono pomyélnie i otrzy-
many wczesniej kod id obrazu moze zosta¢ wykorzystany pozniej do stworzenia posta.

Tumblr

Przygotowanie obrazu do przestania w poscie na platforme Tumblr polega na zakodowa-
niu pliku graficznego do ciaggu znakéw w formie base64. Na poczatku za pomoca URI
(identyfikatora mediow) zostaje odczytana bitmapa obrazu, ktora zostaje skompresowana
i przekonwertowana na postaé¢ binarna, a nastepnie zakodowana. Uzyskany ciag znakow
moze zosta¢ pozniej wykorzystany do przestania grafiki w postaci tekstowej. Ponizszy kod
przedstawia, jak zostato to zaimplementowane w aplikacji:

val source = ImageDecoder.createSource(contentResolver, mediaUri)

val bitmap = ImageDecoder.decodeBitmap(source)

val byteArrayOutputStream = ByteArrayOutputStream()
bitmap.compress(Bitmap.CompressFormat.PNG, 100, byteArrayOutputStream)
val byteArray = byteArrayOutputStream.toByteArray()

val string = Base64.encodeToString(byteArray, Base64.DEFAULT)

2.5.4 Publikacja posta

Po przygotowaniu obrazu mozemy przystapi¢ do publikacji posta. Proces udostepniania
zostanie oméwiony ponizej z uwzglednieniem kazdej z platform z osobna.

X

Aby udostepnié¢ post, nalezy wykona¢ zapytanie POST /2/tweets do API platformy. Po-
nizszy kod przedstawia implementacje tego zadania za pomoca biblioteki Retrofit:

24

QPOST("2/tweets")

Q@Headers("Content-Type: application/json")

fun createTwitterPost(
@Header ("Authorization") authorizationHeader: String,
@Body requestBody: RequestBody

) : Call<ResponseBody>

W ciele zapytania powinien znajdowac sie obiekt JSON zawierajacy parametry text, czyli
opis posta oraz media, czyli media dotaczone do publikacji. Oto przyktad takiego obiektu:

{
"text": "Hello world!",
"media": {"media_ids": ["1455952740635586573"]}

3

Parametr media_ids to tablica id mediéw zataczonych w poscie. Tam umieszczamy war-
tos¢ media_id otrzymang w procesie przesylania obrazu. Jesli zapytanie przebiegto po-
my$lnie i post zostal udostepniony, w odpowiedzi otrzymujemy identyfikator publikacji.

Linkedin

Aby udostepnié¢ post na platformie Linkedin, nalezy wykonaé¢ zapytanie POST /rest/posts
do API. Ponizszy kod przedstawia implementacje tego zadania za pomoca biblioteki Re-
trofit:

@POST("rest/posts")

Q@Headers("LinkedIn-Version: 202308",
"X-Restli-Protocol-Version: 2.0.0",
"Content-Type: application/json")

fun createPost(
OQuery("oauth2_access_token") accessToken: String,
@Body requestBody: RequestBody

) : Call<ResponseBody>

W ciele zapytania powinien znajdowaé sie obiekt JSON zawierajacy parametry text,
czyli opis posta, author, czyli id profilu uzytkownika oraz id, czyli identyfikator obrazu
uzyskany wczesniej w procesie przesytania grafiki. Oto przyktad takiego obiektu:

{

"author": "urn:li:person:5515715",

"commentary": "Post",

"visibility": "PUBLIC",

"distribution": {
"feedDistribution": "MAIN_FEED",
"targetEntities": [],
"thirdPartyDistributionChannels": []

i

"content": {

25

"media": {
"title":"Hello World!",
"id": "urn:1i:image:C5F10AQGKQg_6y2a4sQ"

¥,
"lifecycleState": "PUBLISHED",
"isReshareDisabledByAuthor": false

3

Pomyslnie wykonane zapytanie powinno zwréci¢ identyfikator udostepnionego posta.

Tumblr

Aby udostepnié¢ publikacje na platformie Tumblr, nalezy wykonaé zapytanie POST do API.
W $ciezce URL znajduje sie parametr blog-identifier, czyli wybrany identyfikator
bloga uzyskany w procesie autoryzacji uzytkownika. Ponizszy kod przedstawia implemen-
tacje tego zadania za pomoca biblioteki Retrofit:

@POST("v2/blog/{blog-identifier}/post")

@Headers("Content-Type: application/json")

fun createPost(
@Header ("Authorization") authorization: String,
@Path("blog-identifier") blogIdentifier: String,
@Body requestBody: RequestBody

) : Call<ResponseBody>

W ciele zapytania powinien znajdowac¢ sie obiekt JSON zawierajacy parametry type,
ktorego warto$¢ to photo, caption, czyli opis posta oraz data_64, czyli zakodowany
wczesniej cigg znakow w formacie base64 reprezentujacy przesyltana grafike. Oto przyktad
takiego obiektu:

{
|ltypell ° |lphotoll s
"caption": "Hello World!'",
"data_64": "MIIHNjCCBh6gAwIBAgIQCVe4EOh49mzIONcSqMy1l+]jANBgkghkiGOwOB
n
b

Jesli zapytanie przebiegto pomys§lnie i post zostal udostepniony, w odpowiedzi otrzymu-
jemy identyfikator publikacji.

2.5.5 Usuwanie posta

API mediéow spotecznosciowych oprocz funkeji udostepniania postéw dostarczaja mozli-
wo$¢ usuniecia publikacji. Ten proces zostanie opisany ponizej z uwzglednieniej kazdej z
platform z osobna.

26

X

W celu usunieciu posta nalezy wykonaé¢ zapytanie DELETE /2/tweets/{id}, gdzie para-
metr id jest identyfikatorem otrzymanym po utworzeniu publikacji. Ponizszy kod przed-
stawia implementacje tego zadania za pomoca biblioteki Retrofit:

@DELETE("2/tweets/{id}")

fun deletePost(
Q@Header ("Authorization") authorizationHeader: String,
@Path("id") id: String

) : Call<ResponseBody>

Linkedin

Aby usunaé post udostepniony na platformie Linkedin, nalezy wykona¢ zapytanie
DELETE /rest/posts/{id}, gdzie parametr id jest identyfikatorem otrzymanym po utwo-
rzeniu publikacji. Ponizszy kod przedstawia implementacje tego zadania z uzyciem biblio-
teki Retrofit:

@DELETE("/rest/posts/{id}")

OHeaders("LinkedIn-Version: 202308")

fun deletePost(
QHeader ("Authorization") authorizationHeader: String,
@Path("id") id: String

) : Call<ResponseBody>

Tumblr

W celu usunieciu publikacji na platformie Tumblr, nalezy wykonaé¢ zapytanie

DELETE /v2/blog/{blog-identifier}/post/delete, gdzie parametr blog-identifier
jest identyfikatorem bloga, na ktoérym post zostal udostepniony. W ciele zapytania powi-
nien zosta¢ umieszczony parametr id, czyli identyfikator publikacji. Ponizszy kod przed-
stawia implementacje tego zadania za pomoca biblioteki Retrofit:

@POST("/v2/blog/{blog-identifier}/post/delete")

fun deletePost(
QHeader ("Authorization") authorization: String,
@Path("blog-identifier") blogIdentifier: String,
@Body requestBody: RequestBody

) : Call<ResponseBody>

27

Rozdzial 3
Aplikacja Uploadity

W tym rozdziale zostanie przedstawiona koricowa wersja uzytkownika wraz z jej zrzutami
ekranu, opisem wszystkich funkcji i przyktadami uzycia.

3.1 Zakladka konta

Pierwszym ekranem aplikacji jest zakladka Konta, na ktoérej uzytkownik moze potaczyé
Uploadity ze swoimi profilami na platformach spoteczno$ciowych przez wcisniecie przy-
cisku z listy, gdzie kazde z mediéw spotecznosciowych odpowiada jednemu z nich. Po
zsynchronizowaniu konta pojawia sie ono na liScie z nazwa uzytkownika i ikong danej
platformy.

250 & vt
Dodaj nowe konto Dodaj nowe konto Lista kont
in LINKEDIN LINKEDIN .
in R
jan_kowalski_123
L jan_kowalski_123
L f L ® L

Rysunek 3.1: Widok ekranu Konta przed i po potaczeniu kont spotecznosciowych

Po wcisnieciu jednego z przyciskow uzytkownik zostaje przeniesiony na strone inter-
netowa wybranej platformy, gdzie po zalogowaniu do swojego konta pojawia sie¢ ekran
udzielenia dostepu do publikacji postow z poziomu aplikacji Uploadity. Sa na nim umiesz-
czone uprawnienia, o jakie prosi aplikacja oraz przyciski z pozwoleniem lub odmoéwieniem
dostepu. W obu przypadkach uzytkownik zostaje przeniesiony spowrotem do aplikacji,
ktora otrzymuje informacje o dokonanym wyborze.

28

10:50 @ A 4 | 10:51 @ LN 10:48 @ A 7 |

) @ linkedin.com/oauth/v2/authoriz (@ %) @ tumblrcom/oauth2/authorize/? (@ %) @ apitwitter.com/oauth/authorize [+]
L 4 L desvudiary
Sign out
Authorize
uploadity to %
Uploadity requests the following access your B
Uploadity would like to: ermission(s) to access your account: uploadit
ploadity ? © y account? poacty
« Use your name and photo
Read access
« Create, modify, and delete posts, comments, Authorize app
and reactions on your behalf
« Use the primary email address associated with Write access Cancel
your LinkedIn account
You can stop this sync in your Linkedin Do you agree to grant this application This application will be able
settings. Uploadity terms apply. Learn more. access to some of your data and the o
permission(s) above? You are logged in « See Tweets from your
Not you? with desvudiary. timeline (including

protected Tweets) as well
Uploadity as your Lists and
[‘ uploadity.net.pl m collections.

Cancel « See your Twitter profile

information and account
settings

« See accounts you follow,
mute, and block
« Follow and unfollow

You will be redirected to https://uploadity.net.pl

Privacy Policy ~User Agreement accounts for you

Rysunek 3.2: Ekrany udzielenia dostepu aplikacji do publikacji postow

3.2 Szczegbly konta

Po wrcisnieciu jednego z elementéow listy kont uzytkownik zostaje przeniesiony na ekran
szczegblow konta, gdzie znajduja sie informacje o nazwie platformy, nazwie uzytkownika
oraz w przypadku aplikacji Tumblr lista blogéw potaczonych z profilem. Znajduje sie
tam réwniez przycisk ,Usun konto”, ktore pozwala uzytkownikowi na usuniecie profilu z
aplikacji.

11:03 @

& Szczegoty konta

2]

Konto
Tumblr
Nazwa Czy na pewno chcesz usungé to konto?
Jan Kowalski .
NIE USUN

Nazwa bloga Tytut bloga
jankowalski Blog Jana Kowalskiego
jankowalski2 Drugi Blog Jana

Kowalskiego

USUN KONTO

Rysunek 3.3: Ekrany szczeg6tow konta

3.3 Zakladka posty

Zaktadka Posty przedstawia liste wersji roboczych oraz opublikowanych postow. Kazdy
z elementow listy posiada miniature zdjecia oraz tytul posta. W prawym dolnym rogu

29

znajduje sie przycisk, ktory przenosi uzytkownika do ekranu tworzenia nowego posta.

11:15 @ ®4Lil

Opublikowane posty

@ Post 2

Wersje robocze

% Post 1
g Post 3
m‘ Post 4

f L

Konta Posty

Rysunek 3.4: Zaktadka posty

3.4 Nowy post

Ekran ten stuzy do stworzenia nowej wersji roboczej lub publikacji posta. Znajduja sie tu
dwa pola tekstowe, gdzie mozna nadac tytul oraz opis. Maksymalna ilos¢ znakéw, jakie
moze posiadaé tres¢ posta wynosi 280 - z tego powodu pole opisu réwniez ma takie ogra-
niczenie, a aktualna dlugo$é tekstu wyswietlona jest w prawym dolnym rogu elementu.
Kolejnym elementem jest przycisk wyboru zdjecia, ktory otwiera galerie zdjec¢ telefonu. Po
wybraniu obrazu pojawia si¢ ono na ekranie. Uzytkownik ma rowniez mozliwo$é wybrania
kont, na ktorych ma zosta¢ opublikowany post.

30

11:34 @ LT 1134 @ LT
< Nowy post < Nowy post
experience the nextlevel O

convenience. <~ #MobileApp #Update
Tytut #Android

214/ 280
Tytul posta

Opis posta

4/ Excited to share the latest update on
our Android app! [New features,
improved performance, and a sleeker Ul
await you. Download now and
experience the next level of

convenience. <~ #MobileApp #Update
#Android|

214 /280

Wybierz konta lub blogi

in OlaDark t jankowalski

t jankowalski2 X desvudiary

WYBIERZ ZDJECIE OPUBLIKUJ

Rysunek 3.5: Ekran tworzenia nowego posta

3.5 Edytuj post

Na tym ekranie znajduja sie szczegoty opublikowanego posta - jego tytul, opis oraz lista
kont, na ktore zostat wystany. Uzytkownik ma mozliwos¢ usuniecia publikacji z wybranej
platformy lub z listy postéow w aplikacji.

] LT
< Edytuj post

Tytut
Post 1
Opis posta

Opis postu 1

Czy na pewno chcesz usung¢ ten post z
bloga jankowalski?

NIE USUN

Opublikowano na:

desvudiary
n jankowalski
m Ola Dark

USUN POST

Rysunek 3.6: Ekran edycji opublikowanego posta

