
Uploadity

Aplikacja mobilna służąca do publikacji postów w
mediach społecznościowych

Autor:
Aleksandra Miloch



Spis treści

1 Użyte narzędzia 2
1.1 Android Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Kotlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Retrofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Koncepcja aplikacji i implementacja 4
2.1 Wymagania funkcjonalne . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Wymaganie niefunkcjonalne . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Zarządzanie danymi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Baza danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 User DataStore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Pamięć współdzielona . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Pamięć wewnętrzna aplikacji . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Komponenty aplikacji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 AndroidManifest.xml . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Gradle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.5 ViewModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Łączenie z API mediów społecznościowych . . . . . . . . . . . . . . . . . . 16
2.5.1 Pobieranie klucza API . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Logowanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Przygotowanie obrazu . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.4 Publikacja posta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.5 Usuwanie posta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Aplikacja Uploadity 28
3.1 Zakładka konta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Szczegóły konta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Zakładka posty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Nowy post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Edytuj post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



Rozdział 1

Użyte narzędzia

1.1 Android Studio
Android Studio to oficjalne zintegrowane środowisko programistyczne (ang. IDE - Inte-
grated Development Environment) służące do tworzenia aplikacji na system Android. Jest
oparte na popularnym narzędziu IntelliJ IDEA. Najważniejsze funkcje Android Studio to:

• szybki i bogaty w wiele funkcji emulator urządzeń,

• elastyczne narzędzie Gradle służące do m.in. automatyzacji procesu kompilacji kodu
oraz pobierania zależności (dodatkowych bibliotek),

• ujednolicone środowisko umożliwiające tworzenie aplikacji na wszystkie urządzenia
z systemem Android,

• integracja z systemem Git ułatwiające zarządzania wersjami kodu,

• inteligentna edycja kodu: autouzupełnianie, sprawdzanie poprawności oraz szybkie
przeglądanie dokumentacji.

1.2 Kotlin
Kotlin1 to nowoczesny, statycznie typowany język, który działa na maszynie wirtualnej
Javy. Został stworzony przez firmę JetBrains i jest aktywnie rozwijany przez nią oraz spo-
łeczność, ponieważ działa na zasadzie open-source. Jest on w pełni interoperacyjny z Javą,
co oznacza że oba języki mogą współpracować ze sobą w jednym projekcie oraz korzystać
wzajemnie ze swoich bibliotek. W 2017 roku Google ogłosiło Kotlin oficjalnym językiem
programowania aplikacji mobilnych na platformę Android powodując zwiększenie jego
popularności.

1.3 XML
XML2, czyli Extensible Markup Language, to uniwersalny język znaczników używany do
reprezentacji strukturalnych danych w formie tekstowej. Ułatwia przechowywanie i przeka-
zywanie informacji pomiędzy różnymi systemami. W Androidzie pełni funkcje związane z

1www.kotlinlang.org
2www.w3.org/XML

2



definiowaniem elementów interfejsu użytkownika (takich jak przyciski, pola tekstowe itp.)
oraz konfiguracją aplikacji i jej zasobami graficznymi.

1.4 Retrofit
Retrofit3 to popularna biblioteka służąca do tworzenia efektywnych klientów RESTful
API. Jest rozwijana przez Square, a jej głównym celem jest ułatwienie komunikacji z
serwerem HTTP poprzez tworzenie czystego i łatwego w użyciu interfejsu. Główne cechy
biblioteki to:

• Deklaratywny interfejs API: Retrofit umożliwia definiowanie interfejsu API w
sposób deklaratywny, co oznacza, że programista określa, jakie zapytania i jakie dane
są wymagane bez konieczności bezpośredniej obsługi niskopoziomowych operacji
HTTP.

• Obsługa różnych formatów danych: Retrofit automatycznie obsługuje różne
formaty danych takie jak JSON czy XML. Dostępna jest również możliwość skonfi-
gurowania własnych konwerterów danych.

• Obsługa asynchroniczności: Obsługuje operacje asynchroniczne, co jest istotne
w kontekście komunikacji z serwerem. W przypadku Androida, Retrofit zwykle wy-
korzystuje Coroutines języka Kotlin lub interfejsy zwrotne (ang. callbacks).

• Łatwa konfiguracja: Retrofit jest łatwy w konfiguracji i zapewnia elastyczność w
dostosowywaniu ustawień, takich jak timeouty, konwertery, obsługa błędów i tym
podobne.

• Obsługa elementów zapytań HTTP: Pozwala na łatwą implementację nagłów-
ków, adresów URL, parametrów, rodzajów zapytań, ciała zapytań itp., co jest nie-
zbędne podczas komunikacji z serwerem.

3www.square.github.io/retrofit/

3



Rozdział 2

Koncepcja aplikacji i implementacja

Aplikacja Uploadity służy do publikacji postów w postaci zdjęcia i tekstu na platfor-
mach X, Tumblr oraz Linkedin. Użytkownik ma możliwość połączenia własnych kont z
wymienionych platform przez zalogowanie się z poziomu aplikacji i przekazanie dostępu
do publikacji treści na swoim profilu. Poniżej przedstawione są wymagania funkcjonalne
i niefunkcjonalne aplikacji.

2.1 Wymagania funkcjonalne
• Użytkownik może dodać konto społecznościowe do aplikacji przez kliknięcie w przy-

cisk, który przenosi do strony internetowej konkretnej platformy, gdzie należy się
zalogować na konto i przekazać dostęp do publikacji treści na profilu.

• Użytkownik ma możliwość wyświetlania listy połączonych mediów społecznościo-
wych oraz usuwania ich w przypadku, gdy chce unieważnić dostęp aplikacji do kon-
kretnego konta.

• W celu stworzenia posta, należy wejść w ekran edycji publikacji, gdzie użytkownik
ma możliwość nadania tytułu, opisu oraz wybrania zdjęcia. Po uzupełnieniu tych
pól istnieją dwie opcje - dokonanie wyboru, na które konta ma zostać wstawiony
post lub zapisanie zmian jako wersję roboczą. W każdej chwili użytkownik może
porzucić zmiany przez naciśnięciu przycisku „Anuluj”.

• Użytkownik ma możliwość przeglądania listy wersji roboczych oraz opublikowanych
postów. Po wejściu w szczegóły istnieje opcja usunięcia wybranego elementu.

2.2 Wymaganie niefunkcjonalne
• Przejrzysty i intuicyjny interfejs użytkownika.

• Urządzenie mobilne powinno posiadać system Android w wersji 10 lub wyższej.

• Urządzenie mobilne powinno posiadać dostęp do internetu.

• Użytkownik posiada konto na przynajmniej jednym z mediów społecznościowych
takich jak X, Tumblr lub Linkedin.

4



2.3 Zarządzanie danymi
System Android udostępnia deweloperom różne sposoby przechowywania danych aplika-
cji. Jest to kluczowy element, który pozwala na zachowywanie danych użytkownika na
urządzeniu i unikanie ich utraty w przypadku zamknięcia aplikacji. W Uploadity wszyst-
kie dane przechowywane są lokalnie, dlatego tworzenie serwera aplikacji nie jest potrzebne.
Ważną kwestią jest również dbanie o odpowiednie zarządzanie pamięcią oraz korzystanie z
odpowiednich metod przechowywania danych w zależności od ich rodzaju oraz poufności.
Oto opcje przechowywania danych wykorzystane w aplikacji Uploadity:

2.3.1 Baza danych

Struktura bazy danych

Tabela Accounts przechowuje dane na temat kont użytkownika na poszczególnych plat-
formach społecznościowych.

Atrybut Typ Opis

id integer klucz główny, identyfikator konta w ba-
zie danych

accountId integer identyfikator profilu na platformie spo-
łecznościowej

name string nazwa profilu użytkownika
socialMediaServiceName string nazwa platformy społecznościowej

Tabela Blogs przechowuje dane na temat blogów na platformie Tumblr.

Atrybut Typ Opis

id integer klucz główny, identyfikator bloga w ba-
zie danych

accountId integer klucz obcy odnoszący się do pola id w
tabeli Accounts

name string nazwa bloga
title string tytuł bloga
uuid string identyfikator bloga w serwisie Tumblr

Tabela Posts przechowuje dane na temat postów i wersji roboczych utworzonych w apli-
kacji.

Atrybut Typ Opis
id integer klucz główny, identyfikator posta w bazie danych
title string tytuł posta
description string opis posta
mediaUri string ścieżka pliku obrazu dodanego do posta

isPublished boolean wartość wskazująca czy post został opublikowany,
czy jest wersją roboczą

5



Tabela PostAccounts przechowuje dane na temat postów opublikowanych na każdej z
wybranych platform. Klucz główny tworzą trzy atrybuty, które są kluczami obcymi z tabel
Accounts, Posts oraz Blogs.

Atrybut Typ Opis

postId integer klucz obcy odnoszący się do pola
id w tabeli Post

accountId integer klucz obcy odnoszący się do pola
id w tabeli Accounts

blogId integer klucz obcy odnoszący się do pola
id w tabeli Blogs

isPublished boolean
wartość wskazująca czy post zo-
stał opublikowany na konkretnej
platformie

socialMediaPlatformName string nazwa platformy społecznościo-
wej

name string nazwa konta lub bloga

Rysunek 2.1: Diagram bazy danych

Biblioteka Room

W celu umożliwienia płynnego dostępu do lokalnej bazy danych Android stworzył biblio-
tekę Room1, u podstawy której znajduje się popularny system zarządzania relacyjną bazą
danych SQLite. Room dostarcza wygodny i efektywny interfejs do operacji bazodanowych.
Oto korzyści wynikające z używania tej biblioteki:

• weryfikacja zapytań SQL w czasie kompilacji,
1www.developer.android.com/jetpack/androidx/releases/room

6



• adnotacje, które minimalizują prawdopodobieństwo powtarzalnego i podatnego na
błędy kodu,

• możliwość wygodnej integracji bazy z innymi elementami architektury Androida.

Do podstawowych elementów biblioteki Room należą:

• klasa bazy danych, która jest głównym punktem dostępu do połączenia z danymi
aplikacji,

• encje, które reprezentują tabele w bazie danych,

• obiekty dostępu do danych DAO (Data Access Objects), które dostarczają funkcje
tworzenia zapytań bazodanowych SQL.

Aby wykorzystać bibliotekę Room w aplikacji, należy dodać następujące zależności do
pliku build.gradle:

implementation 'androidx.room:room-runtime:2.6.0'
annotationProcessor 'androidx.room:room-compiler:2.6.0'

Następnie należy zdefiniować encje, które będą reprezentować strukturę w bazie danych.
Encje to klasy, które odpowiadają tabelom w bazie danych. Przykładowo implementacja
encji w tabeli Accounts wygląda następująco:

@Entity(tableName = "accounts")
data class Account(

@PrimaryKey(autoGenerate = true) val id: Int,
val accountId: String,
val name: String,
val socialMediaServiceName: String

)

Kolejnym krokiem jest implementacja DAO (Data Access Object), który definiuje opera-
cje, które można wykonywać na bazie danych. Zawiera metody do wstawiania, pobierania,
aktualizowania i usuwania danych.

@Dao
interface AccountDao {

@Query("SELECT * FROM accounts")
fun getAllAccounts(): List<Account>

@Query("SELECT * FROM accounts WHERE id = :id")
fun getAccount(id: Int): Account?

@Query("SELECT * FROM accounts WHERE socialMediaServiceName =
:socialMediaName")

fun getAccountBySocialMediaName(socialMediaName: String): Account?

@Insert

7



fun insert(account: Account): Long

@Update
fun update(account: Account)

@Delete
fun delete(account: Account)

}

Bazę danych reprezentuje klasa, która rozszerza RoomDatabase i zawiera metody abstrak-
cyjne zwracające DAO:

@Database(entities = [Post::class, Account::class, Blog::class,
PostAccount::class])

abstract class AppDatabase : RoomDatabase() {
companion object {

private var instance: AppDatabase? = null

fun getInstance(context: Context): AppDatabase {
if (instance == null) {

instance = Room.databaseBuilder(context,
AppDatabase::class.java,"the_database.db")

.allowMainThreadQueries()

.fallbackToDestructiveMigration()

.build()
}

return instance as AppDatabase
}

}

abstract fun postDao(): PostDao
abstract fun accountDao(): AccountDao
abstract fun blogDao(): BlogDao
abstract fun postAccountDao(): PostAccountDao

}

W klasie AppDatabase przez funkcję getInstance() zaimplementowany został wzorzec
projektowy singleton, który zapewnia, że w aplikacji zawsze będzie istniała tylko jedna
instancja bazy danych, co zapobiega wyciekom pamięci.
Teraz można użyć DAO do wykonywania operacji na bazie danych w całej aplikacji.
Poniższy kod przedstawia przykład pobrania listy wszystkich kont użytkownika:

val appDao = AppDatabase.getInstance(getApplicationContext())
val accounts = appDao.accountDao().getAllAccounts()

8



2.3.2 User DataStore

To biblioteka służąca do przechowywania prostych danych (np. ustawienia użytkownika
czy stan sesji) klucz-wartość w formie mapy. Pozwala na asynchroniczne, spójne i transak-
cyjne zarządzanie danymi. Działa na zasadzie przesyłania strumieniowego, dzięki czemu
nie trzeba wczytywać wszystkich danych do pamięci jednocześnie, co może być korzystne
w przypadku dużych zbiorów danych. W aplikacji rozwiązanie to zostało użyte do prze-
chowywanie tokenów profili mediów społecznościowych, które zostały połączone przez
użytkownika.

Aby wykorzystać bibliotekę DataStore w aplikacji, należy dodać następujące zależności
do pliku build.gradle:

implementation 'androidx.datastore:datastore-preferences:1.0.0'

W klasie UserDataStore zaimplementowane zostało tworzenie instancji
DataStore<Preferences> oraz funkcje saveStringPreference()
i getStringPreference(), które służą do zapisywania i odczytywania danych typu string.

class UserDataStore(private val context: Context?) {
companion object {

private val Context.dataStore: DataStore<Preferences>
by preferencesDataStore("datastore_name")

}

suspend fun getStringPreference(key: String): String {
val stringPreferenceKey = stringPreferencesKey(key)
return context!!.dataStore.data.map { preferences ->

preferences[stringPreferenceKey] ?: ""
}.first()

}

suspend fun saveStringPreference(key: String, value: String) {
val stringPreferenceKey = stringPreferencesKey(key)
context!!.dataStore.edit { preferences ->

preferences[stringPreferenceKey] = value
}

}
}

2.3.3 Pamięć współdzielona

Jest to przestrzeń, w której dane mogą być współdzielone między różnymi aplikacjami
i użytkownikami. W aplikacji Uploadity konieczny jest dostęp do mediów, aby móc za-
ładować obraz do posta. Do tej funkcji wykorzystany został MediaStore, czyli dostępny
w Androidzie system, który śledzi i zarządza różnymi rodzajami mediów, takimi jak ob-
razy, filmy, dźwięki itp. Udostępnia interfejs do dostępu do plików multimedialnych, a
także umożliwia dostęp do nich przez różne aplikacje. Aby uzyskać dostęp do mediów w

9



Androidzie, należy dodać odpowiednie uprawnienie do odczytu mediów w pliku Android-
Manifest.xml:

<uses-permission android:name="android.permission.READ_MEDIA_IMAGES" />

Następnie należy zarejestrować uruchomienie wybierania pojedynczego obrazu z galerii:

val pickMedia = registerForActivityResult(
ActivityResultContracts.PickVisualMedia()) { uri ->

if (uri != null) {
chooseMedia(uri)

}
}

Po wczytaniu obrazu, można nim zarządzać przez jego URI (ang. Uniform Resource Iden-
tifier), czyli identyfikator do obsługiwania zasobów w Androidzie.

2.3.4 Pamięć wewnętrzna aplikacji

Każda aplikacja Androida posiada dedykowaną lokalizację do przechowywania plików.
Dane zapisane wewnętrznie są dostępne tylko dla danej aplikacji i nie są widoczne w innych
miejscach. W momencie usunięcia aplikacji wszystkie pliki zostają usunięte. W Uploadity
rozwiązanie to zostało wykorzystane do przechowywania obrazów, które zostały dodane
do postów oraz wersji roboczych. Plik należy utworzyć w następujący sposób:

val file = File(context.filesDir, "post_\${post.id}.png")

Plik powstaje w lokalizacji zdefiniowanej przez filesDir. Nazwa każdego zapisanego ob-
razu zawiera id posta, aby zapobiec nadpisywaniu przez siebie plików. Następnie wczy-
tywane jest zdjęcie na podstawie jego URI przez użycie ImageDecoder. Bitmapa zostaje
zapisana do pliku, a strumień zapisu zamknięty.

val source = ImageDecoder.createSource(contentResolver, mediaUri)
val bitmap = ImageDecoder.decodeBitmap(source)
val fileOutputStream = FileOutputStream(file)
bitmap.compress(Bitmap.CompressFormat.PNG, 100, fileOutputStream)
fileOutputStream.flush()
fileOutputStream.close()

2.4 Komponenty aplikacji

2.4.1 AndroidManifest.xml

Każdy projekt Androida posiada plik AndroidManifest.xml. Zawiera on informacje na
temat aplikacji, jej komponentów oraz wymagań systemowych i sprzętowych. Dodatkowo
jest niezbędny do rozpoznania i skonfigurowania aplikacji podczas jej instalacji i urucha-
miania. Główne elementy pliku AndroidManifest.xml to:

10



• Informacje o aplikacji: Zdefiniowanie nazwy projektu i aplikacji, jej ikony, mo-
tywu i innych w znaczniku <application>:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<application

android:name=".UploadityApplication"
android:label="@string/app_name"
android:icon="@mipmap/ic_launcher"
android:theme="@style/Theme.Uploadity">
<!-- Składniki aplikacji -->

</application>
</manifest>

• Aktywności: Elementy reprezentujące ekrany z interfejsem użytkownika, takie jak
ekran listy kont, ekran tworzenia nowego posta itp. Oto przykładowe elementy
Activity w pliku AndroidManifest.xml:

<activity android:name=".AccountActivity"
android:exported="false" />

<activity android:name=".MainActivity"
android:exported="true">
<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

Warto zauważyć, że MainActivity jest główną aktywnością, co oznacza, że po
otwarciu aplikacji pokazuje się użytkownikowi jako pierwsza. Dzieje się to dzięki
dodaniu odpowiedniej akcji i kategorii wewnątrz znacznika <intent-filter>.

• Uprawnienia: Określają, jakie uprawnienia do zasobów systemowych są wymagane
przez aplikację. W przypadku Uploadity jest to dostęp do internetu i wczytywania
obrazów z galerii:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission

android:name="android.permission.READ_MEDIA_IMAGES"/>

2.4.2 Gradle

Gradle jest systemem budowania wykorzystywanym w aplikacjach Androida. Konfiguracja
projektu znajduje się w plikach build.gradle, które głównie zawierają informacje na
temat kompilacji, zarządzania zależnościami i zasobami. Oto skrócony przegląd zawartości
pliku build.gradle w projekcie Uploadity:

11



plugins {
id 'com.android.application'
...

}
android {

applicationId 'com.uploadity'
compileSdk 34
versionCode 1
versionName '1.0'
...

}
dependencies {

implementation 'androidx.core:core-ktx:1.12.0'
implementation 'com.squareup.retrofit2:retrofit:2.9.0'
implementation 'androidx.datastore:datastore-preferences:1.0.0'
...

}

W sekcji plugins znajduje się wtyczka Gradle przeznaczona dla Androida. W bloku
android skonfigurowane są wszystkie opcje budowania aplikacji, takie jak jej wersja, prze-
strzeń nazw (namespace) czy wersja Androida, na którą domyślnie jest kompilowana. Blok
dependencies definiuje wszystkie zależności (czyli dodatkowe biblioteki) dodane do pro-
jektu.

2.4.3 Activity

W Androidzie Activity to jedna z podstawowych jednostek aplikacji. Jest to kompo-
nent, który reprezentuje pojedynczy ekran aplikacji. Każda aktywność jest zazwyczaj
odpowiedzialna za przedstawienie UI (interfejsu użytkownika) i interakcję z użytkowni-
kiem w ramach jednej określonej funkcji aplikacji. W przeciwieństwie do paradygmatów
programowania, w których aplikacje są uruchamiane za pomocą metody main(), system
Android inicjuje kod w instancji Activity, wywołując go w metodach odpowiadających
konkretnym etapom jej cyklu życia. Oto kilka kluczowych cech Activity w Androidzie:

• Interfejs użytkownika: Aktywność jest często związana z interfejsem użytkownika
i może zawierać różne elementy wizualne takie jak przyciski, pola tekstowe, listy,
itp. Widok ekranu jest definiowany w pliku XML.

• Intencje (Intents): Aktywności komunikują się ze sobą i innymi komponentami
systemu za pomocą intencji. To zazwyczaj żądanie do systemu Androida, aby wyko-
nał określoną akcję taką jak uruchomienie nowej aktywności, usługi i tym podobne.

• Obsługa zdarzeń: Aktywność może reagować na różne zdarzenia generowane przez
użytkownika, takie jak dotknięcie ekranu. Odbywa się ona poprzez implementację
różnych metod, na przykład onClick() w przypadku kliknięcia przycisku.

Poniższy kod przedstawia podstawowe elementy MainActivity, czyli głównej aktywności
w aplikacji:

12



class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)

//Inicjalizacja interfejsu użytkownika i obsługa zdarzeń
}
// Dodatkowe metody i logika aktywności

}

Każda klasa aktywności dziedziczy po klasie Activity lub jednym z jej wariantów, w
powyższym przykładzie jest to AppCompatActivity. Nadpisując metodę onCreate() mo-
żemy dodać akcje, które zostaną wykonane w trakcie stworzenia aktywności. W tym przy-
padku jest to zainicjowanie zmiennej binding, która odnosi się do interfejsu użytkownika
zapisanego w pliku XML.

2.4.4 Fragment

Fragment to komponent reprezentujący część interfejsu użytkownika lub zachowanie w
jednym oknie aplikacji, który jest umieszczony w aktywności (Activity). Fragmenty są
często używane w celu zorganizowania interfejsu użytkownika na większych ekranach (ta-
kich jak tablety) lub do ułatwienia ponownego użycia i modularyzacji kodu. Co więcej,
mogą być dodawane, usuwane lub zastępowane dynamicznie podczas działania aplikacji.
W aplikacji Uploadity fragmenty zostały użyte w zakładkach listy kont i postów, które
są umieszczone w MainActivity. W tej aktywności obsługiwany jest również dolny pasek
nawigacji umożliwiający przełączanie pomiędzy zakładkami.

Rysunek 2.2: Umieszczenie fragmentów listy kont oraz postów w MainActivity

13



Poniższy kod przedstawia podstawowe elementy DashboardFragment, gdzie znajduje się
lista kont:

class HomeFragment : Fragment() {
private var binding: FragmentHomeBinding

override fun onCreateView(
inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?

): View? {
binding = FragmentHomeBinding.inflate(inflater, container, false)

//Inicjalizacja interfejsu użytkownika i obsługa zdarzeń

return binding.root
}
// Dodatkowe metody i logika fragmentu

}

OnCreateView() to jedna z metod cyklu życia fragmentu w Androidzie. Jest wywoływana,
gdy fragment inicjuje swoje interfejsy użytkownika przez załadowanie widoku z pliku
XML.

2.4.5 ViewModel

ViewModel to część architektury, która pomaga w separacji logiki biznesowej od interfejsu
użytkownika oraz w przetrzymywaniu danych w sposób trwały podczas zmian konfiguracji
(takich jak obrót urządzenia). W aplikacji Uploadity został wykorzystany w celu przejrzy-
stego i asynchronicznego dostępu do danych. Poniższy diagram przedstawia zarys imple-
mentacji tej architektury na przykładzie ekranu listy kont umieszczonego w HomeFragment
i zarządzanego przez MainViewModel:

14



Rysunek 2.3: Diagram implementacji ViewModel

Oto opis poszczególnych kroków wymaganych do implementacji tej architektury:

1. Na początku należy zmodyfikować AccountDao i zmienić typ danych zwracanych
przez funkcję pobierającą wszystkie konta użytkownika na Flow. Jest to klasa umoż-
liwiająca przesyłanie danych w sposób asynchroniczny. Zaktualizowana metoda wy-
gląda następująco:

@Query("SELECT * FROM accounts")
fun getAllAccountsFlow(): Flow<List<Account>>

2. Następnie należy stworzyć klasę repozytorium, która zajmuje się operacjami na da-
nych i zapewnia przejrzysty interfejs API dla pozostałej części aplikacji. Oto przegląd
najważniejszych części implementacji tej klasy:

class AppDatabaseRepository(
private val accountDao: AccountDao

) {
val allAccounts: Flow<List<Account>> =

accountDao.getAllAccountsFlow()
...

}

3. Następnym krokiem jest implementacja klasy MainViewModel. Będzie ona zapew-
niała listę kont użytkownika i przesyłała ją do widoku HomeFragment w asynchro-
niczny sposób. Aby tego dokonać, należy wykorzystać LiveData, czyli obiekt prze-

15



chowujący dane obserwowane przez interfejs użytkownika. Pozwoli to na automa-
tyczne aktualizowanie widoku w odpowiedzi na zmiany danych w efektywny sposób.
Na początku należy dodać do pliku build.gradle następujące zależności:

implementation 'androidx.lifecycle:lifecycle-livedata-ktx:2.6.2'
implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.6.2'

Poniższy kod przedstawia, jak została zaimplementowana klasa MainViewModel:

class MainViewModel(
private val appDatabase: AppDatabaseRepository

): ViewModel() {
private val allAccounts: LiveData<List<Account>> =

appDatabase.allAccounts.asLiveData()

fun getAllAccounts(): LiveData<List<Account>> {
return allAccountsLiveData

}
...

}

4. Teraz w klasie HomeFragment możemy stworzyć obserwatora za pomocą metody
observe(), który będzie automatycznie aktualizował listę połączonych kont użyt-
kownika:

mainViewModel.getAllAccounts().observe(viewLifecycleOwner)
{ accounts ->

accounts.let { accountItemListAdapter.submitList(it) }
}

Zmienna accountItemListAdapter jest częścią interfejsu użytkownika, która wy-
świetla listę kont na ekranie. Obserwator z każdą aktualizacją danych przekazuje je
za pomocą funkcji submitList().

2.5 Łączenie z API mediów społecznościowych
Aby wykonywać działania w imieniu profilu użytkownika, należy uzyskać jego token do-
stępu (ang. access token). W aplikacji Uploadity proces uwierzytelniania rozpoczyna się
po wciśnięciu jednego z przycisków na ekranie listy kont. Łączenie się z API mediów spo-
łecznościowych obejmuje kilka kluczowych kroków, które zostaną opisane w tym rozdziale.

2.5.1 Pobieranie klucza API

W celu uzyskania dostępu do API mediów społecznościowych, programista musi uzyskać
odpowiednie klucze API i tokeny dostępu w panelu dewelopera. Dodatkowo, aby móc
udostępniać posty w imieniu użytkownika, należy ustawić wymagania umożliwiające tę
akcję za pomocą aplikacji. Oprócz tego wymagane jest podanie strony callback URL,

16



czyli strony internetowej, na którą użytkownik zostanie przeniesiony podczas procesu
autoryzacji. W przypadku platformy X wygląda to następująco:

Rysunek 2.4: Ustawienia uprawnień aplikacji w panelu dewelopera. Źródło: opracowanie
własne.

Rysunek 2.5: Podanie adresu callback URL w panelu dewelopera. Źródło: opracowanie
własne.

Należy unikać przechowywania kluczy API bezpośrednio w kodzie źródłowym, ponieważ
mogą one zostać wyodrębnione podczas dekompilacji, dlatego w aplikacji Uploadity są
przechowywane w następujący sposób:

1. Na początku stworzony został plik local.properties, gdzie umieszczone są klucze
API:

TWITTER_CLIENT_ID="XXXXXXXXXXXXXX"
TWITTER_CLIENT_SECRET="XXXXXXXXXXXXXX"

2. Następnie w pliku build.gradle klucze zostały zdefiniowane jako właściwości:

android {
defaultConfig {

Properties properties = new Properties()
properties.load(project.rootProject.file("local.properties")

.newDataInputStream())
buildConfigField "String", "TWITTER_CLIENT_ID",

properties.getProperty("TWITTER_CLIENT_ID")
buildConfigField "String", "TWITTER_CLIENT_SECRET",

properties.getProperty("TWITTER_CLIENT_SECRET")
}

}

17



3. Teraz klucze API są dostępne w klasie BuildConfig w kodzie źródłowym. Oto
przykład użycia:

val linkedinClientId = BuildConfig.TWITTER_CLIENT_ID

2.5.2 Logowanie

Logowanie do API mediów społecznościowych opiera się na otwartym standardzie uwie-
rzytelniania internetowego OAuth, który umożliwia bezpieczny dostęp do zasobów użyt-
kownika bez konieczności ujawniania jego hasła. Oto jego dwie wersje użyte w aplikacji
Uploadity:

• OAuth 1.0 polega na tym, że każde żądanie wymagające dostępu do zasobów
użytkownika jest podpisywane przy użyciu klucza konsumenta (ang. consumer key)
i klucza dostępu (ang. access token). To zabezpiecza przed modyfikacją żądania
podczas transmisji. W aplikacji Uploadity protokół został zaimplementowany w celu
połączenia się z API platformy X.

• OAuth 2.0 został zbudowany w sposób bardziej elastyczny i prosty niż poprzednia
wersja. Jego autoryzacja jest oparta na tokenach dostępu. Użytkownik autoryzuje
aplikację, a w zamian otrzymuje token, który pozwala na wykonywanie działań
w jego imieniu. OAuth 2.0 został zaimplementowany w celu połączenia się z API
platform Linkedin i Tumblr.

Autoryzacja użytkownika za pomocą OAuth 1.0

Oto kroki procesu uwierzytelnienia konta użytkownika platformy X:

1. Uzyskanie tymczasowego tokenu żądania (ang. request token) za pomocą zapyta-
nia HTTP POST oauth/request_token do API platformy społecznościowej. Oprócz
wymaganych parametrów wymaganych w nagłówku autoryzacyjnym protokołu
OAuth 1.0, należy dodatkowo umieścić tam wartość oauth_callback, czyli adres
URL, do którego zostanie przekierowany użytkownik po udzieleniu aplikacji dostępu
do wykonywania zapytań w jego imieniu, a także parametr oauth_consumer_key,
czyli klucz API aplikacji. Poniższy kod przedstawia funkcję requestToken() w in-
terfejsie TwitterApiInterface implementującą to zapytanie za pomocą biblioteki
Retrofit:

@POST("oauth/request_token")
fun requestToken(

@Header("Authorization") authorizationHeader: String,
@Query("oauth_callback") callbackUrl: String

): Call<ResponseBody>

Jeśli powyższe żądanie powiodło się, powinniśmy otrzymać następującą odpowiedź:

oauth_token=XXX&oauth_token_secret=XXX&oauth_callback_confirmed=true

18



Parametr oauth_token i oauth_token_secret to tymczasowe tokeny dostępu, a
oauth_callback_confirmed to dodatkowe potwierdzenie, że zapytanie przebiegło
pomyślnie.

2. Po otrzymaniu tokenów z poprzedniego żądania możemy wykonać zapytanie
GET oauth/authorize, w którym przekazujemy parametr oauth_token uzyskany w
poprzednim kroku. Oto przykładowy adres URL, na który przenosimy użytkownika:

https://api.twitter.com/oauth/authorize?oauth_token=XXX

Poniższy kod z klasy MainActivity przedstawia sposób, w jaki ta akcja jest wyko-
nywana:

val intent = Intent(Intent.ACTION_VIEW,
Uri.parse("https://api.twitter.com/oauth/authorize?oauth_token=XXX")
startActivity(intent)

Po wykonaniu tego żądania użytkownik zostaje przekierowany do przeglądarki na
stronę platformy, gdzie zostaje poproszony o udzielenie dostępu aplikacji do udo-
stępniania postów w jego imieniu:

Rysunek 2.6: Strona udzielenia uprawnień użytkownika przez aplikację. Źródło: opraco-
wanie własne.

Po zaakceptowaniu prośby platforma X przekierowuje użytkownika na podaną wcze-
śniej stronę jako oauth_callback z parametrami umieszczonymi w tym adresie
URL. W aplikacji Uploadity calback URL dla platformy
X to https://uploadity.net.pl/twitter. Przykładowo w przypadku, gdy użyt-
kownik autoryzował aplikację, zostanie przeniesiony do przeglądarki na następującą
stronę:

19



https://uploadity.net.pl/twitter?oauth_token=XXXXXXX
&oauth_verifier=XXXXXXX

Teraz należy przekierować użytkownika z powrotem do aplikacji. Aby umożliwić tę
czynność, na początku należy umieścić w AndroidManifest.xml kod, który zezwoli
na otwieranie aplikacji z podanego adresu:

<activity
android:name=".MainActivity">
<intent-filter android:autoVerify="true">

<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.BROWSABLE"/>
<data android:scheme="https"/>
<data android:host="uploadity.net.pl"/>
<data android:pathPrefix="/twitter"/>

</intent-filter>
</activity>

Atrybut android:autoVerify="true" sygnalizuje systemowi, że podany adres URL
może otwierać automatycznie aplikację. Dodatkowo należy zadeklarować połączenie
pomiędzy stroną a <intent-filter> przez plik JSON umieszczony w lokalizacji
https://uploadity.net.pl/.well-known/assetlinks.json, który zostaje auto-
matycznie wygenerowany w Android Studio po podaniu odpowiednich informacji.
Zawartość pliku wygląda następująco:

[{
"relation": ["delegate_permission/common.handle_all_urls"],
"target": {

"namespace": "android_app",
"package_name": "com.uploadity",
"sha256_cert_fingerprints":
["1E:42:89:08:E1:AB:43:56:17:54:01:DA:64:52:77:28:AD:3C:60:9F:F7
:64:67:54:4E:B9:26:DD:DE:D2:48:D4"]

}
}]

Istotne elementy w tym pliku to wartość package_name, który definiuje ID aplikacji
zadeklarowane w pliku build.gradle oraz sha256_cert_fingerprints, czyli klucz
podpisywania aplikacji.
Po automatycznym przekierowaniu użytkownika do aplikacji, ląduje on na ekranie
MainActivity dzięki wcześniejszej deklaracji tej aktywności w pliku
AndroidManifest.xml. Teraz możemy odczytać adres strony URL, z którego zosta-
liśmy przeniesieni i przetworzyć parametry przekazane w tym adresie umieszczając
następujący kod w klasie MainActivity:

20



val appLinkIntent: Intent = intent
val appLinkData: Uri? = appLinkIntent.data
if (appLinkData != null) {

when (appLinkData.lastPathSegment) {
"twitter" -> {

val oauthToken = appLinkData
.getQueryParameter("oauth_token")

val oauthVerifier = appLinkData
.getQueryParameter("oauth_verifier")

val oauthCallbackConfirmed = appLinkData
.getQueryParameter("oauth_callback_confirmed")

if (oauthCallbackConfirmed == true) {
getTwitterAccessToken(oauthToken, oauthVerifier)

}
}
...

}
}

3. Ostatnim etapem autoryzacji jest wykonanie zapytania POST oauth/access_token
z parametrami oauth_token i oauth_verifier otrzymanymi w poprzednim kroku.
Poniższy kod przedstawia funkcję accessToken() w interfejsie
TwitterApiInterface implementującą to zapytanie za pomocą biblioteki Retrofit:

@POST("oauth/access_token")
fun accessToken(

@Query("oauth_token") oauthToken: String,
@Query("oauth_verifier") oauthVerifier: String

): Call<ResponseBody>

4. Teraz możemy zapisać otrzymane w odpowiedzi tokeny dostępu w DataStore apli-
kacji w następujący sposób:

userDataStore.saveStringPreference(
userDataStore.twitterAccessTokenKey, userOauthToken)

userDataStore.saveStringPreference(
userDataStore.twitterAccessTokenSecretKey, userOauthTokenSecret)

Autoryzacja użytkownika za pomocą OAuth 2.0

Oto kroki procesu uwierzytelnienia konta użytkownika w protokole OAuth 2.0 na przy-
kładzie platformy Linkedin:

1. Aplikacja przekierowuje użytkownika na stronę autoryzacji
https://www.linkedin.com/oauth/v2/authorization, gdzie użytkownik upraw-
nia aplikację do wykonywania akcji w jego imieniu. W adresie URL powinny się
znajdować następujące parametry:

21



• response_type - jego wartość to zawsze code,
• client_id, czyli klucz API aplikacji wygenerowany w panelu dewelopera,
• redirect_uri, czyli adres URL, do którego użytkownik zostanie przekiero-

wany po przejściu autoryzacji. Wartość ta powinna być taka sama jak podany
wcześniej adres w panelu dewelopera,

• scope, czyli lista pozwoleń wymagana przez aplikację. Wartość ta powinna być
zakodowana w systemie UTF-8.

Przykładowy adres URL, na jaki przekierowujemy użytkownika będzie wyglądał
następująco:

https://www.linkedin.com/oauth/v2/authorization?response_type=code
&client_id=XXXXX&redirect_uri=https://uploadity.net.pl/linkedin
&scope=scope=w_member_social%20openid%20profile%20email

Po wykonaniu tego żądania użytkownik zostaje przekierowany do przeglądarki na
stronę platformy, gdzie zostaje poproszony o udzielenie aplikacji pozwolenia na udo-
stępnianie postów w jego imieniu oraz przekazanie podstawowych informacji:

Rysunek 2.7: Strona udzielenia uprawnień użytkownika przez aplikację. Źródło: opraco-
wanie własne.

2. W przypadku, gdy użytkownik wyrazi zgodę, zostaje przekierowany na stronę prze-
kazaną wcześniej jako parametr redirect_uri wraz z wartością code, która jest
wymagany w następnym kroku autoryzacji. Przykładowy adres URL, na jaki zosta-
nie przeniesiony użytkownik to:

https://uploadity.net.pl/linkedin?code=XXXXXX

Powyższy adres przekierowuje użytkownika z powrotem do aplikacji na tej samej
zasadzie, jak w przypadku logowania na platformę X.

22



3. Ostatnim krokiem logowania jest wymiana kodu autoryzacyjnego uzyskanego w po-
przednim kroku na token dostępowy za pomocą zapytania
POST oauth/v2/accessToken. Ciało zapytania (ang. request body) powinno zawie-
rać następujące parametry:

• grant_type - jego wartość to zawsze authorization_code,
• code, czyli klucz kod autoryzacyjny otrzymany w poprzednim kroku,
• redirect_uri, czyli callback URL podany w poprzednim zapytaniu,
• client_id, czyli klucz API aplikacji wygenerowany w panelu dewelopera,
• client_secret, czyli czyli tajny klucz API aplikacji wygenerowany w panelu

dewelopera.

Wynikiem pomyślnie zakończonego zapytania jest wartość access_token, czyli to-
ken dostępowy do autoryzowania działań w imieniu użytkownika. Powinien być on
przesyłany w nagłówku przy każdym żądaniu wykonywanym przez aplikację w na-
stępującym formacie:

Authorization: Bearer {access_token}

2.5.3 Przygotowanie obrazu

W celu udostępnienia posta z dołączonym do niego obrazem należy najpierw odpowiednio
przygotować grafikę według wytycznych mediów społecznościowych. Ten proces zostanie
omówiony poniżej z uwzględnieniem każdej z platform z osobna.

X

Aby przesłać zdjęcie, należy wykonać zapytanie POST na adres
https://upload.twitter.com/1.1/media/upload.json. W żądaniu powinien znajdo-
wać się parametr media_category, czyli rodzaj przesyłanych mediów, w przypadku ob-
razu jest to TWEET_IMAGE. Należy również dodać dwa nagłówki: autoryzacyjny oraz
Content-Type: multipart/form-data - pozwala on na jednoczesne przesyłanie wielu ro-
dzajów danych w jednym zapytaniu. W żądaniu umieszczamy ciało zapytania w formacie
octet-stream, który pozwala na przesyłanie pliku binarnego. Poniższy kod przedstawia
implementację tego zapytania:

val file = createImageFile()
val client = OkHttpClient()
val requestBody = MultipartBody.Builder()

.setType(MultipartBody.FORM)

.addFormDataPart("media", file.name,
file.asRequestBody("application/octet-stream".toMediaType()))

.build()
val request = Request.Builder()

.url("https://upload.twitter.com/1.1/media/upload.json
?media_category=tweet_image")

.post(requestBody)

.addHeader("Authorization", authorizationHeader)

.build()

23



Jeśli żądanie przebiegło pomyślnie, otrzymujemy odpowiedź z danymi na temat obrazu,
gdzie najważniejszym parametrem jest media_id, który później zostanie wykorzystany do
załączenia mediów do posta.

Linkedin

W celu wysłania obrazu, należy na początku wykonać zapytanie
POST https://api.linkedin.com/rest/images?action=initializeUpload inicjalizu-
jęce ten proces. Przekazujemy parametr owner, który jest id użytkownika na platformie
Linkedin otrzymanym w procesie autoryzacji. Odpowiedź pomyślnie zakończonego zapy-
tania zawiera adres URL, na który powinniśmy przesłać obraz oraz id grafiki. Następnie
należy wysłać żądanie PUT na wskazany wcześniej adres i przekazać plik w ciele zapytania.
Poniższy kod przedstawia implementację tego kroku:

val request = Request.Builder()
.header("Authorization", "Bearer {access_token}")
.url("https://www.linkedin.com/dms-uploads/sp/D4E10AQEHbyAxUyRRkA")
.put(file.asRequestBody("image/png".toMediaTypeOrNull()))
.build()

Jeśli zapytanie zwróci kod 201 Created, oznacza to że przebiegło ono pomyślnie i otrzy-
many wcześniej kod id obrazu może zostać wykorzystany później do stworzenia posta.

Tumblr

Przygotowanie obrazu do przesłania w poście na platformę Tumblr polega na zakodowa-
niu pliku graficznego do ciągu znaków w formie base64. Na początku za pomocą URI
(identyfikatora mediów) zostaje odczytana bitmapa obrazu, która zostaje skompresowana
i przekonwertowana na postać binarną, a następnie zakodowana. Uzyskany ciąg znaków
może zostać poźniej wykorzystany do przesłania grafiki w postaci tekstowej. Poniższy kod
przedstawia, jak zostało to zaimplementowane w aplikacji:

val source = ImageDecoder.createSource(contentResolver, mediaUri)
val bitmap = ImageDecoder.decodeBitmap(source)
val byteArrayOutputStream = ByteArrayOutputStream()
bitmap.compress(Bitmap.CompressFormat.PNG, 100, byteArrayOutputStream)
val byteArray = byteArrayOutputStream.toByteArray()
val string = Base64.encodeToString(byteArray, Base64.DEFAULT)

2.5.4 Publikacja posta

Po przygotowaniu obrazu możemy przystąpić do publikacji posta. Proces udostępniania
zostanie omówiony poniżej z uwzględnieniem każdej z platform z osobna.

X

Aby udostępnić post, należy wykonać zapytanie POST /2/tweets do API platformy. Po-
niższy kod przedstawia implementację tego żądania za pomocą biblioteki Retrofit:

24



@POST("2/tweets")
@Headers("Content-Type: application/json")
fun createTwitterPost(

@Header("Authorization") authorizationHeader: String,
@Body requestBody: RequestBody

): Call<ResponseBody>

W ciele zapytania powinien znajdować się obiekt JSON zawierający parametry text, czyli
opis posta oraz media, czyli media dołączone do publikacji. Oto przykład takiego obiektu:

{
"text": "Hello world!",
"media": {"media_ids": ["1455952740635586573"]}

}

Parametr media_ids to tablica id mediów załączonych w poście. Tam umieszczamy war-
tość media_id otrzymaną w procesie przesyłania obrazu. Jeśli zapytanie przebiegło po-
myślnie i post został udostępniony, w odpowiedzi otrzymujemy identyfikator publikacji.

Linkedin

Aby udostępnić post na platformie Linkedin, należy wykonać zapytanie POST /rest/posts
do API. Poniższy kod przedstawia implementację tego żądania za pomocą biblioteki Re-
trofit:

@POST("rest/posts")
@Headers("LinkedIn-Version: 202308",

"X-Restli-Protocol-Version: 2.0.0",
"Content-Type: application/json")

fun createPost(
@Query("oauth2_access_token") accessToken: String,
@Body requestBody: RequestBody

): Call<ResponseBody>

W ciele zapytania powinien znajdować się obiekt JSON zawierający parametry text,
czyli opis posta, author, czyli id profilu użytkownika oraz id, czyli identyfikator obrazu
uzyskany wcześniej w procesie przesyłania grafiki. Oto przykład takiego obiektu:

{
"author": "urn:li:person:5515715",
"commentary": "Post",
"visibility": "PUBLIC",
"distribution": {

"feedDistribution": "MAIN_FEED",
"targetEntities": [],
"thirdPartyDistributionChannels": []

},
"content": {

25



"media": {
"title":"Hello World!",
"id": "urn:li:image:C5F10AQGKQg_6y2a4sQ"

}
},
"lifecycleState": "PUBLISHED",
"isReshareDisabledByAuthor": false

}

Pomyślnie wykonane zapytanie powinno zwrócić identyfikator udostępnionego posta.

Tumblr

Aby udostępnić publikację na platformie Tumblr, należy wykonać zapytanie POST do API.
W ścieżce URL znajduje się parametr blog-identifier, czyli wybrany identyfikator
bloga uzyskany w procesie autoryzacji użytkownika. Poniższy kod przedstawia implemen-
tację tego żądania za pomocą biblioteki Retrofit:

@POST("v2/blog/{blog-identifier}/post")
@Headers("Content-Type: application/json")
fun createPost(

@Header("Authorization") authorization: String,
@Path("blog-identifier") blogIdentifier: String,
@Body requestBody: RequestBody

): Call<ResponseBody>

W ciele zapytania powinien znajdować się obiekt JSON zawierający parametry type,
którego wartość to photo, caption, czyli opis posta oraz data_64, czyli zakodowany
wcześniej ciąg znaków w formacie base64 reprezentujący przesyłaną grafikę. Oto przykład
takiego obiektu:

{
"type": "photo",
"caption": "Hello World!",
"data_64": "MIIHNjCCBh6gAwIBAgIQCVe4E0h49mzI0NcSqMy1+jANBgkqhkiG9w0B

..."
}

Jeśli zapytanie przebiegło pomyślnie i post został udostępniony, w odpowiedzi otrzymu-
jemy identyfikator publikacji.

2.5.5 Usuwanie posta

API mediów społecznościowych oprócz funkcji udostępniania postów dostarczają możli-
wość usunięcia publikacji. Ten proces zostanie opisany poniżej z uwzględnieniej każdej z
platform z osobna.

26



X

W celu usunięciu posta należy wykonać zapytanie DELETE /2/tweets/{id}, gdzie para-
metr id jest identyfikatorem otrzymanym po utworzeniu publikacji. Poniższy kod przed-
stawia implementację tego żądania za pomocą biblioteki Retrofit:

@DELETE("2/tweets/{id}")
fun deletePost(

@Header("Authorization") authorizationHeader: String,
@Path("id") id: String

): Call<ResponseBody>

Linkedin

Aby usunąć post udostępniony na platformie Linkedin, należy wykonać zapytanie
DELETE /rest/posts/{id}, gdzie parametr id jest identyfikatorem otrzymanym po utwo-
rzeniu publikacji. Poniższy kod przedstawia implementację tego żądania z użyciem biblio-
teki Retrofit:

@DELETE("/rest/posts/{id}")
@Headers("LinkedIn-Version: 202308")
fun deletePost(

@Header("Authorization") authorizationHeader: String,
@Path("id") id: String

): Call<ResponseBody>

Tumblr

W celu usunięciu publikacji na platformie Tumblr, należy wykonać zapytanie
DELETE /v2/blog/{blog-identifier}/post/delete, gdzie parametr blog-identifier
jest identyfikatorem bloga, na którym post został udostępniony. W ciele zapytania powi-
nien zostać umieszczony parametr id, czyli identyfikator publikacji. Poniższy kod przed-
stawia implementację tego żądania za pomocą biblioteki Retrofit:

@POST("/v2/blog/{blog-identifier}/post/delete")
fun deletePost(

@Header("Authorization") authorization: String,
@Path("blog-identifier") blogIdentifier: String,
@Body requestBody: RequestBody

): Call<ResponseBody>

27



Rozdział 3

Aplikacja Uploadity

W tym rozdziale zostanie przedstawiona końcowa wersja użytkownika wraz z jej zrzutami
ekranu, opisem wszystkich funkcji i przykładami użycia.

3.1 Zakładka konta
Pierwszym ekranem aplikacji jest zakładka Konta, na której użytkownik może połączyć
Uploadity ze swoimi profilami na platformach społecznościowych przez wciśnięcie przy-
cisku z listy, gdzie każde z mediów społecznościowych odpowiada jednemu z nich. Po
zsynchronizowaniu konta pojawia się ono na liście z nazwą użytkownika i ikoną danej
platformy.

Rysunek 3.1: Widok ekranu Konta przed i po połączeniu kont społecznościowych

Po wciśnięciu jednego z przycisków użytkownik zostaje przeniesiony na stronę inter-
netową wybranej platformy, gdzie po zalogowaniu do swojego konta pojawia się ekran
udzielenia dostępu do publikacji postów z poziomu aplikacji Uploadity. Są na nim umiesz-
czone uprawnienia, o jakie prosi aplikacja oraz przyciski z pozwoleniem lub odmówieniem
dostępu. W obu przypadkach użytkownik zostaje przeniesiony spowrotem do aplikacji,
która otrzymuje informację o dokonanym wyborze.

28



Rysunek 3.2: Ekrany udzielenia dostępu aplikacji do publikacji postów

3.2 Szczegóły konta
Po wciśnięciu jednego z elementów listy kont użytkownik zostaje przeniesiony na ekran
szczegółów konta, gdzie znajdują się informacje o nazwie platformy, nazwie użytkownika
oraz w przypadku aplikacji Tumblr lista blogów połączonych z profilem. Znajduje się
tam również przycisk „Usuń konto”, które pozwala użytkownikowi na usunięcie profilu z
aplikacji.

Rysunek 3.3: Ekrany szczegółów konta

3.3 Zakładka posty
Zakładka Posty przedstawia listę wersji roboczych oraz opublikowanych postów. Każdy
z elementów listy posiada miniaturę zdjęcia oraz tytuł posta. W prawym dolnym rogu

29



znajduje się przycisk, który przenosi użytkownika do ekranu tworzenia nowego posta.

Rysunek 3.4: Zakładka posty

3.4 Nowy post
Ekran ten służy do stworzenia nowej wersji roboczej lub publikacji posta. Znajdują się tu
dwa pola tekstowe, gdzie można nadać tytuł oraz opis. Maksymalna ilość znaków, jakie
może posiadać treść posta wynosi 280 - z tego powodu pole opisu również ma takie ogra-
niczenie, a aktualna długość tekstu wyświetlona jest w prawym dolnym rogu elementu.
Kolejnym elementem jest przycisk wyboru zdjęcia, który otwiera galerię zdjęć telefonu. Po
wybraniu obrazu pojawia się ono na ekranie. Użytkownik ma również możliwość wybrania
kont, na których ma zostać opublikowany post.

30



Rysunek 3.5: Ekran tworzenia nowego posta

3.5 Edytuj post
Na tym ekranie znajdują się szczegóły opublikowanego posta - jego tytuł, opis oraz lista
kont, na które został wysłany. Użytkownik ma możliwość usunięcia publikacji z wybranej
platformy lub z listy postów w aplikacji.

Rysunek 3.6: Ekran edycji opublikowanego posta

31


